On the Application of Probabilistic Decline Curve Analysis to Unconventional Reservoirs

Author:

Egbe U. C.1,Awoleke O. O.1,Olorode O. M.2ORCID,Goddard S. D.1

Affiliation:

1. University of Alaska Fairbanks

2. Louisiana State University (Corresponding author)

Abstract

Summary Several authors have worked on combining decline curve analysis (DCA) models and stochastic algorithms for probabilistic DCAs. However, there are no publications on the application of these probabilistic decline curve models to all the major shale basins in the United States. Also, several empirical and analytical decline curve models have been developed to fit historical production data better; there is no systematic investigation of the relevance of the efforts on new model development compared with the efforts to quantify the uncertainty associated with the “noise” in the historical data. This work compares the uncertainty associated with determining the best-fit model (epistemic uncertainty) with the uncertainty associated with the historical data (aleatoric uncertainty) and presents a procedure to find DCA-stochastic algorithm combinations that encompass the epistemic uncertainty. We investigated two Bayesian methods—the approximate Bayesian computation and the Gibbs sampler—and two frequentist methods—the conventional bootstrap (BS) and modified BS (MBS). These stochastic algorithms were combined with five empirical DCA models (Arps, Duong, power law, logistic growth, and stretched exponential decline) and the analytical Jacobi theta-2 model. We analyzed historical production data from 1,800 wells (300 wells from each of the six major shale basins studied) with historical data lengths ranging from 12 to 60 months. We show the errors associated with the assumption of a uniform distribution for the model parameters and present an approach for integrating informative prior (IP) probabilistic distributions instead of the noninformative prior (NIP) or uniform prior distributions. Our results indicate the superior performance of the Bayesian methods, especially at short hindcasts (12–24 months of production history). We observed that the duration of the historical production data was the most critical factor. Using long hindcasts (up to 60 months) leveled the performance of all probabilistic methods regardless of the decline curve model or statistical methodology used. Additionally, we showed that it is possible to find DCA-stochastic model combinations that reflect the epistemic uncertainty in most of the shale basins investigated. The novelty of this work lies in the development of IPs for the Bayesian methodologies and the development of a systematic approach to determine the combination of statistical methods and DCA models that encompasses the epistemic uncertainty. The proposed approach was implemented using open-source software packages to make our results reproducible and to facilitate its practical application in forecasting production in unconventional oil and gas reservoirs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3