Acid Filtration Under Dynamic Conditions To Evaluate Gelled Acid Efficiency in Acid Fracturing

Author:

Bazin Brigitte1,Roque Claude1,Chauveteau G. A.1,Boutéca M. J.1

Affiliation:

1. Inst. Francais du Petrole

Abstract

Summary During the acid-fracturing process, part of the fluid enters the formation, dissolving the rock and creating channels, named wormholes which enhance considerably the volume of fluid leak-off and acid consumption into the formation. To increase the efficiency of the acidizing process, the fluid leakoff must be reduced to improve the fracture acidized length. This paper is a contribution to the study of the phenomenology of the acid fracturing process. An experimental approach, which includes the measurements of wormhole propagation velocities, leakoff volumes, and the observations of the dissolution patterns, has been developed to evaluate acid fluids performance under various representative conditions of acid flow into a fracture. The tests are performed in a tangential cell which allows the solution to circulate in a slot and to penetrate the core at constant pressure drop, thus respecting the geometry encountered in the field process. The experiments herein described have been conducted on limestone cores of different permeabilities. The tests have been performed at room temperature, 50 and 80°C with different overbalance pressures. Fluids are gelled and regular acid. The results are discussed in terms of acid fluid efficiency. The fluid leakoff is evaluated for different initial conditions and linked to the dissolution pattern. The results show that etched patterns suitable for acid fracturing are not developed at the core surface with the gelled acid. However, viscosifying the acid reduces the water filtration by a factor ranging from 3 to 10. Etched patterns are favored by high strength straight acids at low overpressure.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3