Affiliation:
1. Petroleum Engineering Department Texas A&M University 507 Richardson Building, College Station, TX 77843
Abstract
Recent laboratory and field studies indicated that polymer-based in situ gelled acids can cause formation damage. Coreflood experiments using single-stage and multistage acids were conducted at 250 °F. 15 wt. % regular HCl and 5 wt. % in situ gelled acid-based on Fe(III) as a crosslinker were the acids that were used in this study. Propagation of acids and crosslinker inside 20 in. long cores was examined for the first time in detail. Stage volume and injection rate, which were the parameters that affect the propagating of various chemical species, were examined. Samples of the core effluent were collected and the concentrations of calcium, crosslinker, and acid were measured. Material balance was conducted to determine the amount of cross-liker that retained in the core. The results show that in situ gelled acid should be pumped at low injection rates. In situ gelled acid at low injection rate instantaneously plugged the tip of the wormhole and did not create additional wormholes inside the core. Therefore, when the final regular acid stage bypassed the gel, it started to propagate from nearly the last point that the first stage ended. In site gelled acid stage volume should not exceed 0.5 PV. No benefits were gained by increasing the volume of in situ gelled acids. Retention of total iron in the core increased in multistage acid treatments, especially at low acid injection rates.
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献