State of the Art of Flow Management for Frac Plug Drillout and Flowback

Author:

Potapenko Dmitriy1,Theuveny Bertrand1,Williams Ryan1,Moncada Katharine1,Campos Mario1,Spesivtsev Pavel1,Willberg Dean1

Affiliation:

1. Schlumberger

Abstract

Abstract Highly efficient multi-stage hydraulic fractured horizontal wellbores are the dominant completion method for many basins worldwide. One potential weakness of multi-stage hydraulic fracturing is that the later stages of the completion workflow – frac-plug drill out (FPDO) and flowback – cause large pressure fluctuations and transient flows through the perforation clusters that coincide with a period of low closure stress in the fractures. The proppant packs in the fractures during this period are fragile and prone to failure. Previously reported results show that flowback and initial production practices have a major impact on proppant production, maintenance and disposal costs and the subsequent well performance. In this paper the results from over 200 FPDO and flowback operations from the United States and Argentina are reviewed. These results show that maintaining a balanced flowrate during FPDO operations is critical for minimizing inadvertent damage to the hydraulic fracture network. The FPDO flowrate balance is the difference between the coiled tubing injection and annular return flowrates. The magnitude and sign of the balance corresponds to the instantaneous flowrate through the open perforation clusters into or out of the hydraulic fracture network. A positive balance rate, or overbalance, injects fluid into the fracture system. A negative balance rate, or underbalance, produces stimulation or formation fluids from the fracture network. Sudden changes between these two regimes creates local flows that can be severe enough to flush large quantities of proppant out of the fractures. Our results show that high-frequency multiphase flowmeters simplify the process of maintaining balance (no inflow, no outflow). Furthermore, close monitoring of any imbalance that develops, and rapid control of the surface choke and injection rate, can provide for an efficient operation while protecting the integrity of the fracture system. Early monitoring of flowback and production with a high frequency flowmeter was shown to be extremely useful technique for optimizing well productivity during well clean-up. This paper also shows how a dual energy gamma ray multiphase flowmeter successfully quantified proppant produced during FPDO and flowback. Examples of the dynamics of sand production are shown, as well as correlations to events of excessive underbalance conditions. At the end of the paper we show that most of the highlighted problems can be solved through making changes to the well construction workflow and accounting for relationships between various well operations. Incorporation of this workflow enables early prediction of well performance issues and their efficient resolution.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3