Study of Factors Causing Annular Gas Flow Following Primary Cementing

Author:

Tinsley John M.1,Miller Erik C.2,Sabins Fred L.1,Sutton Dave L.1

Affiliation:

1. Halliburton Services

2. Pennzoil Co.

Abstract

A model of a cemented annulus was used to evaluate the pressure transmitted and maintained by a static column of cement after placement and until set conditions were reached. Pressure is lost during cement hydration, resulting in annular gas flow. Laboratory and field tests were conducted on a new compressible cement capable of maintaining more stable annular pressure against the formation. Introduction Annular gas flow has been a problem in the industry for many years. One of the first recognized annular gas flow problems occurred during cementing of gas storage wells in the mid-1960's. The severity of this problem has varied from a nuisance factor to one that can be very significant. This paper reviews various types of annular gas flow in different areas of the country and considers the cost currently being spent in remedial cementing operations.Research on the problem of annular gas flow is not new. A, brief summary of previous research and field applications are included.Although much effort has been put forth on annular gas flow problems, until recently no new solutions with positive results have been found. One reason for this has been some lack of understanding of the phase behavior of cement slurries. A 4-year research program has led to the development of a new compressible cement system. Results of its application in several field areas are reviewed. Field History on Annular Gas Flow Various types of annular gas flow problems occur in many different producing areas. Following are a few of the problems encountered in different areas, which show its general nature. Houston Area - Offshore (High Island) Formations in the High Island area are Pleistocene sequences. In this area, annular gas now has been encountered on surface and conductor strings. The annular gas flow can result from shallow gas sands or sands that have been pressurized because of similar flow from higher-pressured zones at greater depths. Annular gas flow in some areas of this field are more pronounced on intermediate production strings and liners. The problem is not limited to deviated holes but, in some cases, may be aggravated by hole angle. In this area, it is common to have gas flow back to surface within 0.5 to 1.5 hours after the plug is bumped. This occurs on pipe strings that are cemented back to surface as well as those where cement is brought back only into the interannulus of the last cemented string.Uncontrolled gas flow from shallow zones or deeper high-pressure and high-deliverability zones outside the cemented surface pipe can cause gas blowout at some distance from the cemented annulus on the ocean floor. Often it has been necessary to bring primary cement back short of the surface and then conduct an annulus squeeze job on the cement top in an attempt to shut off gas flow to the floor of the platform. This, however, does not always prevent the loss of gas into shallow sands from the lower zones. A survey on remedial cementing operations in this area for the past several years indicates that cost has varied from $20,000 to $350,000/well. JPT P. 1427^

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3