An Interdisciplinary Approach to Investigate the Cement Integrity for Underground Hydrogen Storage Wells

Author:

Nasiri Arash1,Ravi Kris1,Prohaska-Marchried Michael1,Feichter Monika1,Raith Johann1,Coti Christian2,Baronio Emanuele2,Busollo Carlo2,Mantegazzi Andrea2,Pozzovivo Vincenzo2,Pruno Stefano3

Affiliation:

1. Montanuniversität Leoben

2. SNAM S.p.A

3. Stratum Reservoir.

Abstract

Abstract Underground gas storage plays an important role in achieving energy security. Hydrogen has been proven to be an important player in energy transition, and, thus, underground hydrogen storage (UHS) will become a focal point in the future of gas storage. This brings uncertainties regarding the behavior of mixtures of hydrogen and natural gas in storage wells. Therefore, a deeper investigation must be conducted to characterize the impact of hydrogen exposure compared with natural gas (methane) on well elements. This study focuses on the cement interaction with the mentioned mixture to prove the readiness of existing and new wells for UHS. Cylindrical samples were prepared out of three types of cement (class A, class G, Special Cement: SC) and were confined in autoclaves in contact with different mixtures of H2/CH4 under 100 bars of pressure and ambient temperature for varying periods of time starting from three weeks. Tests were conducted to investigate the impact of hydrogen exposure on different aspects, namely the mineralogical (X-ray Diffraction; Scanning Electron Microscopy; and Element Distribution Map), mechanical (Uniaxial-Compressive-Strength), and petrophysical (Gas-Permeability). The investigation aimed to establish a comparison of the samples’ characteristics before and after the gas treatment. The pressure was monitored and the gas inside the autoclave was analyzed at the end of each phase. Moreover, samples were visually inspected and weighed prior to and after each phase to evaluate any material deterioration. A rim was observed around the tested samples (mainly in cement type A), proving gas diffusion. Sample drying out played a significant role in the changes seen in permeability, weight, and Uniaxial Compressive Strength (UCS). The scale of gas-permeability change was found to be around 10-1 – 10-2 mD, within measurement uncertainty. This leads to the conclusion that cement samples evaluated under the experimental conditions and durations with the different mixtures show strong similarities in the results. The observed changes cannot be associated to hydrogen since the increase in its percentage did not introduce major impacts nor scale up the observed effects and the exposition at 100% H2 and 100% CH4 environment shows comparable results. This conclusion is based on the comparison of the test performed with the gas mixture at 100 bar and ambient temperature, for an average experimental duration and exposure of 23 days in the laboratory. The paper highlights the novel and multidisciplinary approaches implemented for this study with different gas compositions and sets a baseline for future experimentation regarding the effects of hydrogen on storage wells. The results confirm that hydrogen exposure would not lead to loss of integrity in the tested conditions and environments. The project was conducted through cooperation with the gas storage industry, service company and different university departments.

Publisher

SPE

Reference31 articles.

1. A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook;Muhammed,2022

2. Underground Sun Storage: Chemical Storage of Renewable Energy in porous Subsurface Reservoirs with Exemplary Testbed;Rag Austria,2020

3. 7 - Large-scale underground storage of hydrogen for the grid integration of renewable energy and other applications;Bünger,2016

4. Hydrogeochemical Modeling to Identify Potential Risks of Underground Hydrogen Storage in Depleted Gas Fields;Hemme,2018

5. A Review on Well Integrity Issues for Underground Hydrogen Storage;Ugarte,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3