Improved Oil Recovery Techniques and Their Role in Energy Efficiency and Reducing CO2 Footprint of Oil Production

Author:

Farajzadeh R.1,Glasbergen G.2,Karpan V.3,Mjeni R.4,Boersma D.2,Eftekhari A. A.5,Casquera García A.6,Bruining J.6

Affiliation:

1. Shell Global Solutions International, Delft University of Technology

2. Shell Global Solutions International

3. Shell Development Oman

4. Petroleum Development Oman

5. Technical University of Denmark

6. Delft University of Technology

Abstract

AbstractThe energy intensity (and potentially CO2 intensity) of the production of hydrocarbons increases with the lifetime of the oil fields. This is related to the large volumes of gas and water that need to be handled for producing the oil. There are two potential methods to reduce CO2 emissions from the aging fields: (1) use a low-carbon energy source and/or (2) reduce the volumes of the non-hydrocarbon produced/injected fluids. The first solution requires detailed analysis considering the availability of the infrastructure and carbon tax/credit economics and is largely influenced by the cost of the CO2 capture technologies and renewable power. The second solution utilizes improved/enhanced oil recovery methods (I/EOR) aimed at injecting materials to increase the fraction of oil in the producers.In this paper, we use the production data from a field in the Middle East and show the high-level economics associated with switching the field operating energy demand to solar energy. We begin the analysis by first investigating the energy requirement of different stages in the life cycle of oil production and quantifying the CO2 emission and energy loss that can be avoided in each stage. We also utilize the concept of exergy to identify process steps that require lower energy quality and thus are the main targets for optimization. The analysis indicates that preventing CO2 emission is economically more attractive than utilizing mitigation methods, i.e., to capture the emitted CO2 and store it at later stages. Moreover, we show quantitatively how I/EOR techniques can be designed to reduce the CO2 intensity (kgCO2/bbl oil) of oil production. The energy efficiency of any oil production system depends on the injectant utilization factor, i.e., the volume of produced oil per mass or volume of the injectant.

Publisher

SPE

Reference22 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3