Introducing Data-Driven Virtual Viscosity Measurements

Author:

Karpan Volodimir1,Al Farsi Samya2,Al Sulaimani Hanaa2,Al Mahrouqi Dawood2,Al Mjeni Rifaat2,van Batenburg Diederik3

Affiliation:

1. Shell Development Oman LLC

2. Petroleum Development Oman

3. Shell International Exploration and Production

Abstract

AbstractPolymer-based chemical flooding is a mature enhanced oil recovery technology that has proven to result in significant incremental oil recovery that is both cost and GHG emission-competitive compared to the oil recovered by conventional waterflooding. For such chemical flooding projects, controlling the viscosity of injected polymer solution is critical because the polymer cost is one of the most significant cost elements in the project economics. The polymer viscosity is routinely measured in the laboratory using fluid samples taken manually at different sampling points (i.e., polymer preparation facilities, injecting lines, and well heads). However, in the case of large-scale projects, such viscosity monitoring becomes time-consuming and requires dedicated field staff. Moreover, the quality of laboratory-measured viscosity is questionable due to the potential viscosity degradation caused by the oxygen ingress or polymer shearing during sampling, storage, and measurement. The inline viscometers were introduced to improve the reliability of viscosity measurements and have a better quality of viscosity monitoring. Such viscometers are relatively simple devices readily available on the market from several vendors. However, the device comes at additional costs and requires modifications at the tie-in point (bypass line, drainage, and (sometimes) communication and power lines). On top of it, operational costs include regular maintenance that the inline viscometer requires to ensure good data quality.This study introduces a data-driven Virtual Viscosity Meter (VVM) as a tool to augment the inline and laboratory viscosity measurements. Standard injector wells in a field are equipped with gauges that report injection rate, well/tubing head pressure, and temperature of the injected fluid. With such well data and viscosity measurements, calculating the viscosity becomes a machine learning regression problem. Training the machine learning regression methods on the actual inline and laboratory-measured polymer viscosity has demonstrated that VVM is a promising, high-accuracy solution with a low computational cost. The possibility of further implementing this approach to calculate the viscosity of an injected fluid was investigated using the data from several projects. Finally, the application of the VVM tool for viscosity monitoring and the limitations of VVM were discussed.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3