An Efficient Reservoir-Simulation Approach To Design and Optimize Unconventional Gas Production

Author:

Yu Wei1,Sepehrnoori Kamy1

Affiliation:

1. The University of Texas at Austin

Abstract

Summary Shale-gas production has gained worldwide attention over the past several years. Production from shale-gas reservoirs requires horizontal drilling with multiple hydraulic fracturing to obtain the most economical production. However, there are high cost and uncertainty because of many inestimable and uncertain parameters (e.g., reservoir permeability, porosity, fracture spacing, fracture half length,fracture conductivity, gas desorption, geomechanics, and existing natural fractures). Therefore, the development of a way to quantify uncertainties and optimization of shale-gas production in an efficient and practical method is clearly desirable. In this paper, we present a user-friendly and efficient framework to obtain the optimal gas-production scenario by optimizing the uncertain factors by integrating several commercial simulators, an economic model, design of experiment (DoE), and response-surface methodology (RSM) with a global optimization search engine. Specifically, we use factorial design to screen insignificant factors and find the most influential design and uncertain factors; then, we use RSM to design over those most influential factors to fit a response surface using net present value (NPV) as the objective function; finally, we identify the most economical production scenario under conditions of uncertainty. Eight uncertain parameters [i.e., porosity, permeability, reservoir thickness, reservoir pressure, bottomhole pressure (BHP), fracture spacing, fracture half-length, and fracture conductivity] with a reasonable range on the basis of Barnett-shale information are investigated. Also, different gas prices are considered for the optimization process. This framework is effective and efficient for hydraulic-fracturing- treatment design and production-scheme optimization in unconventional gas reservoirs. It can contribute to providing guidance for engineers to modify the design of a hydraulic-fracture treatment before the actual fracture treatment.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3