Analytical Solutions for Multiple Matrix in Fractured Reservoirs: Application to Conventional and Unconventional Reservoirs

Author:

Torcuk Mehmet A.1,Kurtoglu Basak2,Alharthy Najeeb1,Kazemi Hossein1

Affiliation:

1. Colorado School of Mines

2. Marathon Oil Company

Abstract

Summary In this paper, we present a new method to model heterogeneity and flow channeling in petroleum reservoirs—especially reservoirs containing interconnected microfractures. The method is applicable to both conventional and unconventional reservoirs where the interconnected microfractures form the major flow path. The flow equations, which could include flow contributions from matrix blocks of various size, permeability, and porosities, are solved by the Laplace-transform analytical solutions and finite-difference numerical solutions. The accuracy of flow from and into nanodarcy matrix blocks is of great interest to those dealing with unconventional reservoirs; thus, matrix flow equations are solved by use of both pseudosteady-state (PSS) and unsteady state (USS) formulations and the results are compared. The matrix blocks can be of different size and properties within the representative elementary volume (REV) in the analytical solutions, and within each control volume (CV) in the numerical solutions. Although the analytical solutions were developed for slightly compressible rock/fluid linear systems, the numerical solutions are general and can be used for nonlinear, multiphase, multicomponent flow problems. The mathematical solutions were used to analyze the longterm and short-term performances of two separate wells in an unconventional reservoir. It is concluded that matrix contribution to flow is very slow in a typical low-permeability unconventional reservoir and much of the enhanced production is from the fluids contained in the microfractures rather than in the matrix. In addition to field applications, the mathematical formulations and solution methods are presented in a transparent fashion to allow easy usage of the techniques for reservoir and engineering applications.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3