Evaluation of Energy Storage Potential of Unconventional Shale Reservoirs Using Numerical Simulation of Cyclic Gas Injection

Author:

Augustine Chad1,Johnston Henry1,Young David L.1,Amini Kaveh2,Uzun Ilkay2,Kazemi Hossein2

Affiliation:

1. National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, CO 80401

2. Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401

Abstract

Abstract Compressed air energy storage (CAES) stores energy as compressed air in underground formations, typically salt dome caverns. When electricity demand grows, the compressed air is released through a turbine to produce electricity. CAES in the US is limited to one plant built in 1991, due in part to the inherent risk and uncertainty of developing subsurface storage reservoirs. As an alternative to CAES, we propose using some of the hundreds of thousands of hydraulically fractured horizontal wells to store energy as compressed natural gas in unconventional shale reservoirs. To store energy, produced or “sales” natural gas is injected back into the formation using excess electricity and is later produced through an expander to generate electricity. To evaluate this concept, we performed numerical simulations of cyclic natural gas injection into unconventional shale reservoirs using cmg-gem commercial reservoir modeling software. We tested short-term (diurnal) and long-term (seasonal) energy storage potential by modeling well injection and production gas flowrates as a function of bottom-hole pressure. First, we developed a conceptual model of a single fracture stage in an unconventional shale reservoir to characterize reservoir behavior during cyclic injection and production. Next, we modeled cyclic injection in the Marcellus shale gas play using published data. Results indicate that Marcellus unconventional shale reservoirs could support both short- and long-term energy storage at capacities of 100–1000 kWe per well. The results indicate that energy storage in unconventional shale gas wells may be feasible and warrants further investigation.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3