Micro-Continuum Approach for Modeling Coupled Flow and Geomechanical Processes in Fractured Rocks

Author:

He Xupeng1,AlSinan Marwah2,Zhang Zhen1,Kwak Hyung2,Hoteit Hussein1

Affiliation:

1. King Abdullah University of Science and Technology

2. Saudi Aramco

Abstract

Abstract Coupling flow with geomechanical processes at the pore scale in fractured rocks is essential in understanding the macroscopic processes of interest, such as geothermal energy extraction, CO2 sequestration, and hydrocarbon production from naturally and hydraulically fractured reservoirs. To investigate the microscopic (pore-scale) phenomena, we propose an efficient and accurate flow-geomechanics coupling algorithm to advance the fundamental flow mechanism from the micro-continuum perspective. Further, we investigate the stress influence on fluid leakage caused by matrix-fracture interaction. In this work, we employ a hybrid micro-continuum approach to describe the flow in fractured rocks, in which fracture flow is described by Navier-Stokes (NS) equations and flow in the surrounding matrix is modeled by Darcy's law. This hybrid modeling is achieved using the extended Darcy-Brinkman-Stokes (EDBS) equations. This approach applies a unified conservation equation for flow in both media (fracture & matrix). We then couple the EDBS flow model with the Brown-Scholz (BS) geomechanical model, which quantifies the deformation of rock fractures. We demonstrate the accuracy of the coupled flow-geomechanical algorithm, in which the accuracy of the EDBS flow model is validated by a simple case with a known analytical solution. The BS geomechanical model is demonstrated with experimental data collected from the literature. The developed flow-geomechanical coupling algorithm is then used to perform sensitivity analyses to explore the factors impacting the fluid leakage caused by the matrix-fracture interaction. We found that the degree of fluid leakage increases as matrix permeability increases and fractures become rougher. Fluid leakage degree decreases with the increase of inertial forces because of the existence of eddies, which prevents the flux exchange between the matrix and fracture. We also investigate the stress influence on fluid leakage and further on fracture permeability under the impact of matrix-fracture interaction. We conclude the fracture permeability would increase with the consideration of the fluid leakage and exhibits an exponential relation with the effective stress.

Publisher

SPE

Reference26 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3