Robust Method for Reservoir Simulation History Matching Using Bayesian Inversion and Long-Short-Term Memory Network-Based Proxy

Author:

Zhang Zhen1,He Xupeng1,AlSinan Marwah2,Kwak Hyung2,Hoteit Hussein3ORCID

Affiliation:

1. King Abdullah University of Science and Technology (KAUST)

2. Saudi Aramco

3. King Abdullah University of Science and Technology (KAUST) (Corresponding author)

Abstract

Summary History matching is a critical process used for calibrating simulation models and assessing subsurface uncertainties. This common technique aims to align the reservoir models with the observed data. However, achieving this goal is often challenging due to the nonuniqueness of the solution, underlying subsurface uncertainties, and usually the high computational cost of simulations. The traditional approach is often based on trial and error, which is exhaustive and labor-intensive. Some analytical and numerical proxies combined with Monte Carlo simulations are used to reduce the computational time. However, these approaches suffer from low accuracy and may not fully capture subsurface uncertainties. This study proposes a new robust method using Bayesian Markov chain Monte Carlo (MCMC) to perform assisted history matching under uncertainties. We propose a novel three-step workflow that includes (1) multiresolution low-fidelity models to guarantee high-quality matching; (2) long-short-term memory (LSTM) network as a low-fidelity model to reproduce continuous time response based on the simulation model, combined with Bayesian optimization to obtain the optimum low-fidelity model; and (3) Bayesian MCMC runs to obtain the Bayesian inversion of the uncertainty parameters. We perform sensitivity analysis on the LSTM’s architecture, hyperparameters, training set, number of chains, and chain length to obtain the optimum setup for Bayesian-LSTM history matching. We also compare the performance of predicting the recovery factor (RF) using different surrogate methods, including polynomial chaos expansions (PCE), kriging, and support vector machines for regression (SVR). We demonstrate the proposed method using a water flooding problem for the upper Tarbert formation of the 10th SPE comparative model. This study case represents a highly heterogeneous nearshore environment. Results showed that the Bayesian-optimized LSTM has successfully captured the physics in the high-fidelity model. The Bayesian-LSTM MCMC produces an accurate prediction with narrow ranges of uncertainties. The posterior prediction through the high-fidelity model ensures the robustness and accuracy of the workflow. This approach provides an efficient and practical history-matching method for reservoir simulation and subsurface flow modeling with significant uncertainties.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Reference92 articles.

1. Maximizing Acquisition Functions for Bayesian Optimization;Wilson,2018

2. The Assessment of Prior Distributions in Bayesian Analysis;Winkler;J Am Stat Assoc,1967

3. Automatic History Matching With Variable-Metric Methods;Yang;SPE Res Eng,1988

4. Seismic Tomography Using Variational Inference Methods;Zhang;J Geophys Res Solid Earth,2020

5. History Matching Using the Ensemble Kalman Filter With Multiscale Parameterization: A Field Case Study;Zhang;SPE J,2011

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3