An Integrated Modeling Work Flow With Hydraulic Fracturing, Reservoir Simulation, and Uncertainty Analysis for Unconventional-Reservoir Development

Author:

Liang Baosheng1,Khan Shahzad1,Puspita Sinchia Dewi1

Affiliation:

1. Chevron North America Exploration and Production

Abstract

Summary It is important to determine several key parameters, such as well spacing, completions design, landing strategy, and pad sequence, for a successful full-field development of the unconventional reservoir that involves multiple wells and pads in a given area of interest. Those parameters are normally considered individually through small and simple models. In this paper, focusing on developing the whole area effectively, we provided a systematic work flow to handle such challenges together: We first recommended a top-down concept that better represents actual field development and illustrates the importance of the 3D Earth model for the unconventional reservoir; we then proposed an integrated modeling that is an iterative loop consisting of the 3D Earth model, hydraulic-fracture modeling, reservoir simulation, and uncertainty analysis. It is uncommon to build a 3D Earth model for the unconventional reservoir mainly because of the lack of data and software capability. In this paper, we provided a cost-effective approach for the first time on the basis of a large amount of existing vertical wells, newly drilled horizontal wells, and all the data available. A 3D Earth model using information from approximately 1,100 vertical wells from the Midland Basin was presented. Such a model has a high resolution conditioned by high well density, and has an advantage of capturing heterogeneities and interactions more than a simplified model created either from one well or low-resolution seismic interpretation. The model was fed into hydraulic-fracture modeling with the consideration of natural-fracture network and stress shadow, followed by reservoir simulation. The in-house uncertainty-analysis package that functions by experimental-design philosophy is linked to the Earth model, hydraulic-fracture modeling, and reservoir simulation. For the first time, the impacts of all the parameters together were evaluated through the final production performance. In our example, we considered completions design, discrete-fracture-network (DFN) characterization and generation, unpropped hydraulic-fracture properties, fracture compaction, and matrix permeability. The result indicated that DFN characterization is the most important parameter affecting production performance. We applied our model and work flow to field development. Well spacing and pad sequence were studied in this paper as two examples. We demonstrated that it is important to properly consider complex interactions among multiple clusters, stages, and wells to evaluate the impacts on well spacing, completions, and development sequence.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3