A Methodology for Multilateral-Well Optimization

Author:

Wilson Adam1

Affiliation:

1. JPT Special Publications Editor

Abstract

This article, written by Special Publications Editor Adam Wilson, contains highlights of paper SPE 183004, “A Methodology for Multilateral-Well Optimization—Field Case Study,” by Ivan Cetkovic, SPE, Majed Shammari, SPE, and Talal Sager, Saudi Aramco, prepared for the 2016 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, 7–10 November. The paper has not been peer reviewed. Multilateral wells with smart completions controlled by different flow-control technologies offer great operational flexibility, with each lateral able to be operated and optimized independently. Understanding the contribution of each lateral in the complexity of the system was a major objective of this study. In order to optimize the system and predict results under different operational conditions, a multilateral-well-modeling methodology was developed. This methodology covers two main factors affecting multilateral productivity—a flow-dependent gas/oil ratio (GOR) and interference between the laterals. Wells Overview The study was based on multilateral wells complete with inflow control valves (ICVs). As a general description, the wells are completed with three to seven laterals and each lateral is isolated by packers and controlled by an ICV, as shown in Fig. 1. Multilateral-Well Modeling A multiphase surface system flow simulator that is able to optimize production from wells and networks as an integrated system was adapted to generate and optimize the subsurface multilateral-well flow behavior. This simulator is used mainly for surface network modeling and optimization, but the complex subsurface well system was modeled with this application. This complex simulation model resolves and finds the optimal ICV pressure drop and diameter for each lateral for different inflow-performance conditions, such as different rate-dependent GOR curves at different operational conditions. The model was created as a black-oil model. In each lateral, the flow and pressure drop through the reservoir are determined in the horizontal section, as well as the annular flow between the casing and tubing. Each ICV is represented with a choke model. The primary method for validating a model is to match it to an observed production well test. This validation includes the requirement to represent flow and pressure at different operational conditions in order to predict operational conditions. A nodal analysis of a well model consists basically of two different curves—an inflow curve that represents the flow rate and flowing bottomhole pressure at different conditions and an outflow curve that represents the behavior of the pressure drop at different flow rates through the completion. The intersection of the inflow and outflow curves determines the operational point and is the point that needs to be matched at different operational conditions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3