An Interpretable Interflow Simulated Graph Neural Network for Reservoir Connectivity Analysis

Author:

Wang Haochen1,Han Jianfa2,Zhang Kai3,Yao Chuanjin1,Ma Xiaopeng1,Zhang Liming1,Yang Yongfei1,Zhang Huaqing1,Yao Jun1

Affiliation:

1. China University of Petroleum

2. Exploration and Development Research Institute of PetroChina Tarim Oilfield Company

3. China University of Petroleum (Corresponding author; email: zhangkai@upc.edu.cn)

Abstract

Summary Reservoir connectivity analysis plays an essential role in controlling water cut in the middle and later stages of reservoir development. The traditional analysis methods, such as well test and tracer, may result in interruption and high reservoir development costs. Analyzing connectivity through history data is an advisable alternative method because the fluctuation of data reflects interwell interference. However, most of the former data-driven methods, such as capacitance and resistance model (CRM), estimate connectivity using formulas in relatively simple forms, leading to inadequate expression for underground interwell flow. In this paper, an interpretable recurrent graph neural network (GNN) is proposed to construct an interacting process imitating the real interwell flow regularity and overcoming the weakness in previous methods. In contrast, it is formed by a deep enough neural network structure with a relatively larger number of parameters when compared with the CRM model. In detail, this method makes the first use of both rate information and bottomhole pressure (BHP) to completely describe the hidden state of wells and the energy information exchanged among them, which are then continually updated in spatial and temporal ways. Meanwhile, a self-defined recurrent structure deals with the time lag and attenuation phenomenon as it records the residual energy from past timestamps. Finally, it calculates BHP for each production well with the manually specified production rate as extra input data. Detailed results are presented in two examples. Our proposed method shows significant advantages to other methods due to its reasonable structure and great ability to fit nonlinear mapping.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3