A Deep-Learning-Based Graph Neural Network-Long-Short-Term Memory Model for Reservoir Simulation and Optimization With Varying Well Controls

Author:

Huang Hu1ORCID,Gong Bin2ORCID,Sun Wenyue3ORCID

Affiliation:

1. China University of Geosciences

2. China University of Geosciences (Corresponding author)

3. China University of Petroleum (East China)

Abstract

Summary A new deep-learning-based surrogate model is developed and applied for predicting dynamic oil rate and water rate with different well controls. The surrogate model is based on the graph neural networks (GNNs) and long-short-term memory (LSTM) techniques. The GNN models are used to characterize the connections of injector-producer pairs and producer-producer pairs, while an LSTM structure is developed to simulate the evolution of the constructed GNN models over time. In this way, we use geological attributes at wells and well controls with different times as input data. The oil rates and water rates at different times are generated. In this study, the GNN-LSTM surrogate model is applied to a high dimensional oil-gas-water field case with flow driven by 189 wells (i.e., 96 producers and 93 injectors) operating under time-varying control specifications. A total of 500 high-fidelity training simulations are performed in the offline stage, out of which 450 simulations are used for training the GNN-LSTM surrogate model, which takes about 150 minutes on an RTX2060 GPU. The trained model is then used to provide production forecasts under various well control scenarios, which are shown to be consistent with those obtained from the high-fidelity simulations (e.g., around 4.8% and 4.3% average relative errors for water production rates and oil production rates, respectively). The online computations from our GNN-LSTM model take about 0.3 seconds per run, achieving a speedup of over a factor of 1,000 relative to the high-fidelity simulations, which takes about 363 seconds per run. Overall, this model is shown to provide reliable and fast predictions of oil rates and water rates with a large level of perturbations in the well controls. Finally, the proposed GNN-LSTM model, in conjunction with the particle swarm optimization (PSO) technique, is applied to optimize the field oil production by varying the well control schedule of all injectors. Due to the significant speedup and high accuracy of the proposed surrogate model, the improved well-control strategies can be efficiently obtained.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3