Low Salinity Enhanced Oil Recovery - Laboratory to Day One Field Implementation - LoSal EOR into the Clair Ridge Project

Author:

Robbana Enis1,Buikema Todd1,Mair Chris1,Williams Dale1,Mercer Dave1,Webb Kevin1,Hewson Aubrey1,Reddick Chris1

Affiliation:

1. BP

Abstract

Abstract Clair Ridge will include the first offshore deployment of BP's reduced salinity LoSal® enhanced oil recovery (EOR) water injection technology. Over the last ten-years, there has been significant growth in the evidence supporting the use of low salinity water injection as a viable EOR process. BP, by using its LoSal EOR technology, has shown that incremental increases in oil recovery can be achieved across length scales associated with core flood experiments (inches), field-based single well chemical tracer tests (feet) and field trials (inter-well distances). This paper discusses the process undertaken by the Clair Ridge project in getting LoSal EOR adopted as a day one, secondary waterflood. Confirmation and quantification of the LoSal EOR potential at Clair Ridge began in 2006 with completion of a series of core floods using three reservoir rock types. However, it was recognised that as a green field development single well chemical tracer tests or field trials were not possible ahead of sanction. Therefore, confidence in the materiality of recoverable oil by using LoSal EOR was built through integration of core flood data into reservoir simulation studies focused on a thorough investigation of the subsurface, produced water disposal and reverse osmosis operability uncertainties. In parallel, scoping facilities studies were completed to provide cost, weight and footprint estimates for inclusion of a 145 mbd RO plant on the platform. Finally, and critical to the success of this project was early and open partner engagement in LoSal EOR evaluation.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3