Asymptotic Model of the 3D Flow in a Progressing-Cavity Pump

Author:

Andrade S.F.A.. F.A.1,Valério J.V.. V.2,Carvalho M.S.. S.2

Affiliation:

1. Petrobras Pontifícia Universidade Católica do Rio de Janeiro

2. Pontifícia Universidade Católica do Rio de Janeiro

Abstract

Summary Fundamental understanding of the flow inside progressing-cavity pumps (PCPs) represents an important step in the optimization of the efficiency of these pumps, which are largely used in artificial-lift processes in the petroleum industry. The computation of the flow inside a PCP is extremely complex because of the transient character of the flow, the moving boundaries, and the difference in length scale of the channel height between the stator and rotor. This complexity makes the use of computational fluid dynamics (CFD) as an engineering tool almost impossible. This work presents an asymptotic model to describe the single-phase flow inside PCPs using lubrication theory. The model was developed for Newtonian fluid, and lubrication theory was used to reduce the 3D Navier-Stokes equations in cylindrical coordinates to a 2D Poisson's equation for the pressure field at each timestep, which is solved numerically by a second-order finite-difference method. The predictions are close to the experimental data and the results obtained by solving the complete 3D, transient Navier-Stokes equations with moving boundaries, available in the literature. Although the accuracy is similar to the complete 3D model, the computing time of the presented model is orders of magnitude smaller. The model was used to study the effect of geometry, fluid properties, and operating parameters in the pump-performance curves and can be used in the design of new pumping processes.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3