A New Analytical Approach To Calculate a Slippage inside a Progressing Cavity Pump with a Metallic Stator Using a Middle Streamline and a Structural Periodicity

Author:

Om Il Lyong1,Han Un Chol1,Ryo Song Il1,Kim Chun Yong1,Sol Yong Nam1

Affiliation:

1. Kim Chaek University of Technology

Abstract

Summary Simplified and 3D models have been studied to predict the performance of progressing cavity pumps (PCPs). Simplified models were mainly made for metallic stator PCP performance. Their purpose was to represent the relationship between pump flow rate and differential pressure. Previous studies proposed to solve the system of mass conservation equations. In these studies, the geometry of the gap area was not clearly represented by neglecting the curvatures of stator and rotor. In addition, only frictional loss was considered, but local loss by gradual contraction or expansion of the gap area was not considered. In this study, we present a new analytical approach considering curvature and local loss. The depth of the gap area and local loss could be calculated analytically by a middle streamline and a curvature. On the basis of periodicity of distribution of cavities, simplified calculation for a slippage was possible without a system of mass conservation equations. Therefore, this model represents clearer geometry and a more simplified approach. The results show that this model shortens the calculating time and facilitates programing; in addition, the model validation is good in matching with experimental data.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3