Fuel Formation and Conversion During In-Situ Combustion of Crude Oil

Author:

Berna Hascakir1,Ross Cynthia M.2,Castanier Louis M.2,Kovscek Anthony R.2

Affiliation:

1. Texas A&M University,

2. Stanford University

Abstract

Summary In-situ combustion (ISC) is a successful method with great potential for thermal enhanced oil recovery. Field applications of ISC are limited, however, because the process is complex and not well-understood. A significant open question for ISC is the formation of coke or "fuel" in correct quantities that is sufficiently reactive to sustain combustion. We study ISC from a laboratory perspective in 1 m long combustion tubes that allow the monitoring of the progress of the combustion front by use of X-ray computed tomography (CT) and temperature profiles. Two crude oils—12°API (986 kg/m3) and 9°API (1007 kg/m3)—are studied. Cross-sectional images of oil movement and banking in situ are obtained through the appropriate analysis of the spatially and temporally varying CT numbers. Combustion-tube runs are quenched before front breakthrough at the production end, thereby permitting a post-mortem analysis of combustion products and, in particular, the fuel (coke and coke-like residues) just downstream of the combustion front. Fuel is analyzed with both scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). XPS and SEM results are used to identify the shape, texture, and elemental composition of fuel in the X-ray CT images. The SEM and XPS results aid efforts to differentiate among combustion-tube results with significant and negligible amounts of clay minerals. Initial results indicate that clays increase the surface area of fuel deposits formed, and this aids combustion. In addition, comparisons are made of coke-like residues formed during experiments under an inert nitrogen atmosphere and from in-situ combustion. Study results contribute to an improved mechanistic understanding of ISC, fuel formation, and the role of mineral substrates in either aiding or impeding combustion. CT imaging permits inference of the width and movement of the fuel zone in situ.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3