In Situ Combustion Characteristics of Heavy Oil in the Liaohe Oilfield at Different Temperatures

Author:

Gong Yuning1,Song Yang1,Feng Tian1,Guo Yong2,Wang Xusheng2ORCID

Affiliation:

1. Exploration and Development Research Institute, Liaohe Oilfield Company, PetroChina, Panjin 124000, China

2. Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730030, China

Abstract

This study conducted in situ combustion oxidation experiments on crude oil from Block D within the Liaohe Oilfield, utilizing a kettle furnace low-pressure oxidation reaction method at various temperatures. The molecular composition of oxidation products was analyzed using gas chromatography–mass spectrometry (GC–MS) and high-resolution mass spectrometry. The results reveal that the molecular composition of the products remains relatively stable up to 300 °C, exhibiting a slight increase in C13-C30 alkanes. The ratio of the peak area for C21 to bisnorhopane is 0.082. From 300 °C to 450 °C, compounds with long alkyl chains gradually undergo thermal cracking, resulting in a significant increase in the production of alkanes within the C10–C30 range. The concentration of saturated hydrocarbons produced through thermal cracking reaches its maximum at a temperature of 400 °C. The most abundant peak of n-alkane is observed at C21, with a quantified ratio of peak area for C21 to bisnorhopane at 6.5, indicating a two-order magnitude increase compared to crude oil. From 500 °C to 600 °C, compounds undergo more profound thermal cracking and condensation processes. The predominant hydrocarbons consist of aromatic molecules containing two to six rings substituted with short side chains. The double bond equivalent (DBE) values of carbazoles and carboxylic acids are determined as 30 and 25, respectively. At 600 °C, the peak area ratio of naphthalene to biodecane is 300, indicating a remarkable increase of five orders of magnitude compared to the crude oil. The present study elucidates the correlation between the characteristics of combustion components in crude oil and the corresponding combustion temperature. Primary cracking reactions within crude oil are promoted effectively when keeping the combustion zone at 350 °C and 450 °C. This process significantly reduces the viscosity of heavy oil and enhances its fluidity.

Funder

China Petroleum Science and Technology Special Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3