Integrating Model Uncertainty in Probabilistic Decline-Curve Analysis for Unconventional-Oil-Production Forecasting

Author:

Hong Aojie1,Bratvold Reidar B.1,Lake Larry W.2,Ruiz Maraggi Leopoldo M.2

Affiliation:

1. National IOR Centre of Norway and University of Stavanger

2. University of Texas at Austin

Abstract

Summary Decline-curve analysis (DCA) for unconventional plays requires a model that can capture the characteristics of different flow regimes. Thus, various models have been proposed. Traditionally, in probabilistic DCA, an analyst chooses a single model that is believed to best fit the data. However, several models might fit the data almost equally well, and the one that best fits the data might not best represent the flow characteristics. Therefore, uncertainty remains regarding which is the “best” model. This work aims to integrate model uncertainty in probabilistic DCA for unconventional plays. Instead of identifying a single “best” model, we propose to regard any model as potentially good, with goodness characterized by a probability. The probability of a model being good is interpreted as a measure of the relative truthfulness of this model compared with the other models. This probability is subsequently used to weight the model forecast. Bayes' law is used to assess the model probabilities for given data. Multiple samples of the model-parameter values are obtained using maximum likelihood estimation (MLE) with Monte Carlo simulation. Thus, the unique probabilistic forecasts of each individual model are aggregated into a single probabilistic forecast, which incorporates model uncertainty along with the intrinsic uncertainty (i.e., the measurement errors) in the given data. We demonstrate and conclude that using the proposed approach can mitigate over/underestimates resulting from using a single decline-curve model for forecasting. The proposed approach performs well in propagating model uncertainty to uncertainty in production forecasting; that is, we determine a forecast that represents uncertainty given multiple possible models conditioned to the data. The field data show that no one model is the most probable to be good for all wells. The novelties of this work are that probability is used to describe the goodness of a model; a Bayesian approach is used to integrate the model uncertainty in probabilistic DCA; the approach is applied to actual field data to identify the most-probable model given the data; and we demonstrate the value of using this approach to consider multiple models in probabilistic DCA for unconventional plays.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3