Understanding of Asphaltene Deposition in the Production Tubing and Reservoir Rock While Flowing at Bottom-Hole Pressure Below Asphaltene Onset Pressure, AOP in the Magwa-Marrat Field

Author:

Gonzalez Fabio A1,Gonzalez Doris L2,Altemeemi Bashayer3,Al-Nasheet Anwar3,Snasiri Fatemah3,Jassim Sara3,Sinha Satyendra3,Shaw Paul1,Ghloum Ebtisam4,Al-Kandari Bader4,Kholosy Sohabi4,Emadi Alireza5

Affiliation:

1. BP Kuwait

2. BP America

3. KOC

4. KISR

5. Premier Oilfield Group-Corex

Abstract

Abstract Asphaltene deposition in reservoir rock is very difficult to remediate. If precipitated, asphaltenes could be trapped in the formation pores, the particles can deposit and plug the porous media reducing permeability. However, it has been hypothesized that precipitated asphaltene could entrain back into the liquid phase if the shear rate is high enough before it is deposited, adsorbed and anchored to the rock. This work intends to evaluate the role of rate in the asphaltene deposition tendency for the asphaltenic Magwa-Marrat reservoir fluid. Precisely, the purpose of this work is to study the effect of production rates and operating pressures on asphaltene deposition in the production tubing and reservoir rock at lab level running Coreflooding tests and at field level producing a well at different rates. This work provides insights into field observations of a trial well producing at a bottom hole flowing pressure below AOP. Several multi rate tests and pressure transient analysis were performed to understand asphaltene deposition in the reservoir near wellbore region and away from the well. Asphaltene deposition in the production tubing was also assessed by means of friction coefficient calculations to better understand the deposition mechanism, especially the roles played by shear rate and pressure. Coreflooding experiments at different flow rates below and above AOP were run after proper characterization of the cores and reservoir fluids. As expected, the laboratory Coreflooding results demonstrated that there were no changes in the cores’ flow capacity whether at low or at high velocities when the pore pressure was kept above AOP. However, when the pore pressure was brought below AOP, Coreflooding tests showed that the higher the velocity, the lower the permeability impairment. This concludes that fluid velocity is an important factor in the asphaltene deposition mechanism. Field tests were also conducted, and the field observations were fully consistent with laboratory results. In the case of asphaltenic crude oils, industry standards recommend depleting the reservoir to pressures no lower than AOP. Based on results of this study, and alternative approach is proposed; basically, depending on the rock-fluid properties and their interaction, it is possible to deplete the reservoir pressure significantly below AOP. Asphaltene deposition is nowadays an area of research and this study has brought some uniqueness to this subject. 1) The laboratory tests were designed together with field tests to confirm the validity of conclusions; 2) It demonstrates that a reservoir can be operated at pressures below AOP and wells produced at higher production rates as a result of operating at higher drawdowns. Altogether, the proposed approach in this paper to mitigate asphaltene deposition maximizes production offtake to the full potential of the wells while optimizing ultimate recovery; 3) Results from these field and laboratory tests have been used for field development planning that would increase the net present value of the project by a) depleting the reservoir pressure below AOP, which increases recovery factor, b) delaying water injection which minimizes CAPEX, and c) decreasing well interventions that minimizes OPEX.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3