Clues from Dispersion and Deposition Based Test Methodologies to Solve the Asphaltene Jig-Saw Puzzle

Author:

Punase Abhishek1,Burnett Will1,Wylde Jonathan1

Affiliation:

1. ?

Abstract

Abstract Changing thermodynamic and compositional conditions of producing fields can cause decreased asphaltene stability and initiate aggregation, subsequent precipitation, and eventual deposition within flowlines. Usage of asphaltene inhibitors that prevent aggregation and tackle the problem right at the inception is widely preferred. However, such chemistries were observed to be counter-productive and led to higher asphaltene deposition in many cases. Thus, raising the question of what approach works best for assessing asphaltene stability: Dispersion or Deposition? The focus of this study is to explore the relationship between the underlying working mechanism of dispersion and deposition-based test methods. Multiple crude oil samples produced from different regions of the world were evaluated using asphaltene inhibitor chemistries with optical transmittance, thermo- electric, and flow loop methods. Optical transmittance method evaluates sedimentation rate and cluster size distribution of asphaltene cluster within the test fluid medium. Thermoelectric method describes the dispersion state of asphaltenes within native crude oil. Flow loop setup assesses total mass deposited when the oil (blank or dosed) and precipitant mixture is flown through capillary tubes. The results from these tests indicated that a fine balance between the dispersion and deposition mechanisms must be maintained as these may not respond linearly or in direct relationship at all conditions. It was seen that dispersing the asphaltene clusters too small may lead to high diffusional rate within the low flow shear regime and build up more deposit in depositional dominant test methods. Variation in treatment concentration (especially overtreatment) of an effective asphaltene inhibitor can result in lowering of cluster size to a range which in effect can cause more deposition. The overall assessment suggests that not having a holistic overlook at these test methods and following the standard process of giving specific focus on a singular approach, can mislead the asphaltene stability and inhibitor performance evaluation. The key role of asphaltene cluster size as a bridge relating the dispersion and deposition-based test method is revealed in this paper. It is seen that there exists an effective range of cluster size within which the results from different test methods correlate well. Therefore, it is imperative that the asphaltene inhibitor development philosophy must include test screening methods focusing on each instability stage (precipitation, aggregation, and deposition) individually and combine the learnings to come up with the best recommendation.

Publisher

SPE

Reference38 articles.

1. An insight into asphaltene precipitation, deposition and management stratagems in petroleum industry;Adebiyi;Journal of Pipeline Science and Engineering,2021

2. What Can We Learn from Analysis of Field Asphaltenes Deposits? Enhancing Product Development Through Knowledge-Based Field-to-Lab-to-Field Approach;Aguiar,2019

3. A Comprehensive Review of Asphaltene Deposition in Petroleum Reservoirs: Theory, Challenges, and Tips;Alimohammadi;Fuel,2019

4. D2007-11: Standard Test Method for Characteristic Groups in Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorption Chromatographic Method;ASTM,2011

5. Becker, H. L.Jr , "Asphaltene: To Treat or Not", SPE-59703-MS, paper presented at SPE Permian Basin Oil and Gas Recovery Conference, Midland, TX, USA (Mar. 21, 2000).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3