Quantification of Fluid Production Distribution in Deviated Wells with High Gas-Liquid Ratio Using a Flow Array Sensing Tool

Author:

González José Wilfredo1,Linares Alejandro Jose1,Rodriguez Diego Armando2,Rivera Gerson Orlando2,Schoepf Virginie M3,Abbassi Linda3

Affiliation:

1. Lupatech Oilfield Services

2. Hocol SA

3. Openfield Technology

Abstract

AbstractThe objective of this paper is to depict the quantification of the production rates of the different phases in deviated wells with high gas-liquid relation using the Flow Array Sensing Tool (FAST). The readings of standard Production Logging Tools (fullbore flowmeter, density, and capacitance) are centralized, therefore they are affected if there is re-circulation of the heavy phase (liquid). The phase segregation and possible apparent down flow of the heavy phase makes it very difficult to determine the distribution of the produced fluids, and in some cases the spinner flowmeter tends to stop or gives inaccurate readings. The cause of these inaccurate readings is that the centralized spinner is affected by positive flow in the high side and negative flow in the low side of the wellbore, and the spinner shows no flow or even apparent downhole flow, when there is a real positive flow.The FAST tool used during the acquisition of the production logs is an ultracompact production logging tool (3 ft long) that is capable to measure multiphase flows with an array of 8 sensors, two in each arm and located 90° apart. These sensors are based on MEMS (Microelectromechanichal Systems), and among the interchangeable sensors we have optical probes that takes ultra-rapid measurements of the refractive index and can determine hold-up of water, oil and gas; the electrical probes that measures conductivity to differentiate hydrocarbons from water, and magnetic probes with micro-spinners to determine the flow rate. Both the three phase optical probes and the electrical probes have excellent response including water hold-ups over 90% that cannot be measured with a standard capacitance tool.The data logged with FAST in deviated wells was processed and interpreted to obtain the apparent flow velocity profiles of each of the 4 micro-spinners and with the three phase optical probes, and the relative bearing curves the velocity maps, and hold-up maps where obtained. The velocity map showed that there was negative flow in the low side of the well and positive flow in the high side while the hold-up map showed the light phase (gas) in the high side of the well. Both maps showed clearly the flow pattern and were used to quantify the production of each perforation and the total rate matched closely the surface rate (within 2% deviation).With the hold-up and velocity maps, the real flow rates were obtained with high confidence, and the flow pattern were shown clearly in deviated wells. The three phase optical probes, and electrical probes are excellent indicators of water and hydrocarbons inflow in a wide range of hold-ups.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3