Third Generation Production Logging Technologies Enhance Inflow Profiling in Deepwater Gulf of Mexico Reservoirs

Author:

Donovan Glenn1,Kamath Sagar1,Tanis Elizabeth1,Abbassi Linda2,Gysen Alain3

Affiliation:

1. Shell Exploration and Production Co.

2. Openfield Technology

3. Interpretive Software Products

Abstract

Abstract This paper discusses the effectiveness of the third-generation (Gen3) Production Logging Tool (PLT) technology which incorporates the use of co-located digital sensors for simultaneous acquisition of flow data. Case studies are provided which demonstrate that this technology is a step-change in the application of digitalization to a down-hole sensor platform which provides the most accurate characterization of the flow condition at each depth surveyed. The resulting data allows for much improved processing which is also described. The probabilistic interpretive model used in the processing has been updated to incorporate this and future developments in PLT architecture. Planning, execution, and analysis of data for the wells is described in detail. Due to the significantly shorter configuration of Gen3 tools, safety at the wellsite is enhanced by allowing for a much-simplified surface rig-up. One well was logged in surface readout (SRO) mode while data in the other two were recorded in the downhole tool's memory for retrieval at the surface at the end of operations. This flexibility in logging modes optimizes operations by addressing the needs of the operation teams. Three Deepwater Gulf of Mexico producers logged with the Gen3 PLT are described. In each case, a clear path forward is provided for optimal management of the reservoirs through effective production management. The first generation (Gen1) of PLT provided a single discrete measurement for each sensor along the tool assembly's length, resulting in long tool assemblies and measurements taken at different points along the flow path. This approach had several drawbacks: long toolstrings, point sensors only provided a measurement at a single point in the cross-section of the flow, and measurements were not acquired simultaneously at each depth logged. The second generation (Gen2) of PLT was an improvement as sensors were arranged as an array enabling multiple measurements to be made at a single depth but were still long and not all were optimally arranged to capture data in the path of flow. The Gen3 PLT is one-tenth the length of the Gen1 versions and roughly one-third of the shortest Gen2 tools. Digitization allows for direct measurement of flow conditions and rapid interpretation of results. In multi-phase flow and deviated wells, the co-location of sensors in a spatial geometry provides the optimal information with which to create a fully accurate picture of the downhole flow.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3