Affiliation:
1. University of Stavanger
Abstract
Summary
The purpose of this paper is to investigate the main controlling factors during a continuum-flow regime in shale-gas production in the context where well-induced fractures, extending from the well perforations, improve reservoir conductivity and performance. A mathematical 1D+1D model is presented that involves a high-permeability fracture extending from a well perforation through symmetrically surrounding shale matrix with low permeability. Gas in the matrix occurs in the form of adsorbed material attached to kerogen (modeled by a Langmuir isotherm) and as free gas in the nanopores. The pressure gradient toward the fracture and well perforation causes the free gas to flow. With pressure depletion, gas desorbs out of the kerogen into the pore space and then flows to the fracture. When the pressure has stabilized, desorption and production stop.
The production of shale gas and mass distributions indicate the efficiency of species transfer between fracture and matrix. We show that the behavior can be scaled and described according to the magnitude of two characteristic dimensionless numbers: the ratio of diffusion time scales in shale and fracture, α, and the pore-volume (PV) ratio between the shale and fracture domains, β. Fracture/matrix properties are varied systematically to understand the role of fracture/matrix interaction during production. Further, the role of fracture geometry (varying width) is investigated. Input parameters from experimental and field data in the literature are applied.
The product αβ expresses how much time it takes to diffuse the gas in place through the fracture to the well compared with the time it takes to diffuse that gas from the matrix to the fracture. For αβ≪1, the residence time in the fracture is of negligible importance, and fracture properties such as shape, width, and permeability can be ignored. However, if αβ≈1, the residence time in the fracture becomes important, and variations in all those properties have significant effects on the solution.
The model allows for intuitive interpretation of the complex shale-gas-production system. Furthermore, the current model creates a base that can easily incorporate nonlinear-flow mechanisms and geomechanical effects that are not readily found in standard commercial software, and further be extended to field-scale application.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献