Controlling Parameters During Continuum Flow in Shale-Gas Production: A Fracture/Matrix-Modeling Approach

Author:

Berawala Dhruvit S.1,Andersen Pål Ø.1,Ursin (ret.) Jann R.1

Affiliation:

1. University of Stavanger

Abstract

Summary The purpose of this paper is to investigate the main controlling factors during a continuum-flow regime in shale-gas production in the context where well-induced fractures, extending from the well perforations, improve reservoir conductivity and performance. A mathematical 1D+1D model is presented that involves a high-permeability fracture extending from a well perforation through symmetrically surrounding shale matrix with low permeability. Gas in the matrix occurs in the form of adsorbed material attached to kerogen (modeled by a Langmuir isotherm) and as free gas in the nanopores. The pressure gradient toward the fracture and well perforation causes the free gas to flow. With pressure depletion, gas desorbs out of the kerogen into the pore space and then flows to the fracture. When the pressure has stabilized, desorption and production stop. The production of shale gas and mass distributions indicate the efficiency of species transfer between fracture and matrix. We show that the behavior can be scaled and described according to the magnitude of two characteristic dimensionless numbers: the ratio of diffusion time scales in shale and fracture, α, and the pore-volume (PV) ratio between the shale and fracture domains, β. Fracture/matrix properties are varied systematically to understand the role of fracture/matrix interaction during production. Further, the role of fracture geometry (varying width) is investigated. Input parameters from experimental and field data in the literature are applied. The product αβ expresses how much time it takes to diffuse the gas in place through the fracture to the well compared with the time it takes to diffuse that gas from the matrix to the fracture. For αβ≪1, the residence time in the fracture is of negligible importance, and fracture properties such as shape, width, and permeability can be ignored. However, if αβ≈1, the residence time in the fracture becomes important, and variations in all those properties have significant effects on the solution. The model allows for intuitive interpretation of the complex shale-gas-production system. Furthermore, the current model creates a base that can easily incorporate nonlinear-flow mechanisms and geomechanical effects that are not readily found in standard commercial software, and further be extended to field-scale application.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3