Pressure-Transient Analysis for Waterflooding with the Influence of Dynamic Induced Fracture in Tight Reservoir: Model and Case Studies

Author:

Wang Zhipeng1ORCID,Ning Zhengfu2ORCID,Guo Wenting1ORCID,Cheng Qidi3ORCID

Affiliation:

1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing)

2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing) (Corresponding author)

3. Xinjiang Oil Field Company

Abstract

Summary It is well known that waterflooding will create fractures. The created fractures are divided into hydraulic fractures (artificial fractures with proppant) and induced fractures (formed during waterflooding without proppant). There is no proppant in the induced fracture, so it will close as the pressure decreases and extend as the pressure increases. We call it a dynamic induced fracture (DIF). Because of reduced pressure, the DIF will be closed during the shut-in pressure test (well testing). The current conventional well-testing model cannot describe the dynamic behavior of the DIF, resulting in obtaining unreasonable parameters. Thus, this work proposes a DIF model to characterize the DIF behavior during well testing (the injection well will shut in, resulting in a reduction in bottomhole pressure and induced-fracture closure). It is worth noting that a high-permeability zone (HPZ) will be formed by long-time waterflooding and particle transport. The HPZ radius will be greater than or equal to the DIF half-length because the waterflooding pressure can move particles but not necessarily expand the fracture. The point source function method and Duhamel principle are used to obtain the bottomhole pressure response. Numerical simulation methods are used to verify the accuracy of the model. Field cases are matched to demonstrate the practicability of the DIF model. Results show a straight line with a slope greater than the unit, a peak, a straight line with a slope less than one-half, and an upturned straight line on the pressure derivative curve. This peak can move up, down, left, and right to characterize the induced fracture’s dynamic conductivity (DC). The straight line with a slope greater than the unit can illustrate a fracture storage effect. The straight line with a slope less than one-half can describe the closed induced-fracture (CIF) half-length. The upturned straight line can describe the HPZ and reservoir permeability. The obtained parameters will be inaccurate if they are incorrectly identified as other flow regimes. Field cases are matched well to illustrate that identifying the three innovative flow regimes can improve the parameters’ accuracy. In conclusion, the proposed model can characterize the dynamic behavior of induced fracture, better match the field data, and obtain more reasonable reservoir parameters. Finally, two field cases in tight reservoir are discussed to prove its practicality.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3