The Effect of Drillstring Rotation on Equivalent Circulation Density: Modeling and Analysis of Field Measurements

Author:

Ahmed Ramadan1,Enfis Majed1,Miftah-El-Kheir Hamza1,Laget Morten2,Saasen Arild3

Affiliation:

1. University of Oklahoma

2. AGR Petroleum Services

3. Det norske oljeselskap ASA and the University of Stavanger

Abstract

Abstract A number of field and laboratory studies have been carried out to accurately predict the effect of drillstring rotation on downhole pressure and equivalent circulating density (ECD). Field studies indicated that drillstring rotation often results in an increased ECD. This is in contradiction with the results obtained from number of laboratory studies and other field studies. Consequently, there is no comprehensive model that accounts for the effect drillstring rotation on wellbore hydraulics. Recently, simple empirical models have been developed based on field measurements alone. Although these models can be very useful as they are based on field measurements, they have no physical basis and are limited to specific ranges of field parameters. This article presents results of field studies and theoretical analysis conducted on the effect of drillstring rotation on wellbore hydraulics. Field measurements during actual drilling operation were obtained from four different wells. Key drilling parameters such as flow rate, drillstring rotation speed, rate of penetration, ECD and return density, were recorded as a function of measured depth. Selected published field measurements were analyzed systematically using dimensional analysis techniques. After correlating different dimensionless groups, a new semi-empirical model was developed. The model was rigorously tested for its accuracy. Model predictions were compared with new field measurements and predictions of an existing model. Model predictions show good agreement with field measurements. The new model exhibits appreciably better accuracy than the existing one. The model developed in this investigation is relevant to manage ECD in slim holes, deepwater wells, and extended-reach wells where the increased wellbore length results in excessive pressure loss and limits the operating window for bottom hole pressure. In deepwater applications, ECD management becomes critical due to the narrow operating window between the pore and fracture pressure gradients.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3