Prediction of the equivalent circulation density using machine learning algorithms based on real-time data

Author:

Kandil Abdelrahman1,Khaled Samir2,Elfakharany Taher2

Affiliation:

1. Department of Petroleum Engineering, Faculty of Engineering and Technology, Future University in Egypt (FUE), Cairo 11835, Egypt

2. Department of Mining and Petroleum Engineering, Faculty of Engineering, Al-Azhar University, Cairo 11835, Egypt

Abstract

<abstract> <p>Equivalent circulation density (ECD) is one of the most important parameters that should be considered while designing drilling programs. With increasing the wells' deep, offshore hydrocarbon extraction, the costly daily rate of downhole measurements, operating restrictions, and the fluctuations in the global market prices, it is necessary to reduce the non-productive time and costs associated with hole problems resulting from ignoring and incorrect evaluation of ECD. Therefore, optimizing ECD and selecting the best drilling parameters are curial tasks in such operations. The main objective of this work is to predict ECD using three machine learning algorithms: an artificial neural network (ANN) with a Levenberg-Marquardt backpropagation algorithm, a K neighbors regressor (knn), and a passive aggressive regressor (par). These models are based on 14 critical operation parameters that have been provided by downhole sensors during drilling operations such as annular pressure, annular temperature, and rate of penetration, etc. In the study, 4663 data points were selected and included, where 80% to 85% of the data set has been used for training and validation according to the algorithm, and the remaining data points were reserved for testing. In addition, several statistical tests were used to evaluate the accuracy of the models, including root mean square error (RMSE), correlation coefficient (R<sup>2</sup>), and mean squared error (MSE). The results of the developed models show various consistencies and accuracy, while the ANN shows a high accuracy with an R<sup>2</sup> of nearly 0.999 for the training, validation, and testing, as well as the overall of them. The RMSE is 0.000211, 0.000253, 0.00293, and 0.00315 for overall, training, validation, and testing, respectively. This work expands the use of artificial intelligence in the gas and oil industry. The developed ANN model is more flexible in response to challenges, reduces dependence on humans, and thus, reduces the chance of human omission, as well as increasing the efficiency of operations.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3