Polymer Injectivity Enhancement Using Chemical Stimulation: A Multi-Dimensional Study

Author:

Chandrasekhar Sriram1,Alexis Dennis Arun1,Jin Julia1,Malik Taimur1,Dwarakanath Varadarajan1

Affiliation:

1. Chevron Technical Center, a division of Chevron USA Inc.

Abstract

Abstract Chevron injected emulsion polymer in the Captain field, offshore UK in the last decade at various scales (Poulsen et al., 2018). Pilot horizontal wells had exhibited faster than designed injectivity decline and Jackson et al. (2019) documented the causes to include oleic phase damage from a) injection of produced water containing crude oil after imperfect separation, and b) entrainment of injected emulsion polymer’s carrier oil. The wells were remediated with a surfactant stimulation package (Alexis et al., 2021; Dwarakanath et al., 2016). The remediation boosted the water relative permeability near wellbore which enhanced injectivity and allowed higher processing rates for subsequent continuous polymer injection. In this work, we conducted a set of core floods in slabs of surrogate rock of varying dimension and patterns to demonstrate the beneficial effect of near wellbore stimulation in the general case. 0.04 PV of the remediation package was injected and we show consistent injectivity enhancement across the experiments. We demonstrate the dominant effect of well skin treatment on the pressure drop profile compared to flow resistance from a) residual oil saturation and b) viscous fingering. The result is an important reminder for injectivity maintenance for high polymer flood processing rates for the life of the project. Clean injection fluids were demonstrated to maintain injectivity. We show applicability of stimulation for injectors into viscous oil reservoirs with adverse viscosity ratio. The robust nature of the remediation package developed by Alexis et al. (2021) is also shown, working to efficacy on viscous oil, as well as in situ phase separated polymer. We estimated skin and stimulation depth for a line drive case with low chemical dosage finding that 0.04 pore volumes of surfactant injection at 0.33 oil saturation units gave injectivity improvement of 31%. Surfactant stimulation is thus broadly applicable to wells with oleic phase skin.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3