Permeability Reduction Due to use of Liquid Polymers and Development of Remediation Options

Author:

Dwarakanath Varadarajan1,Dean Robert M.1,Slaughter Will1,Alexis Dennis1,Espinosa David1,Kim Do Hoon1,Lee Vincent1,Malik Taimur1,Winslow Greg1,Jackson Adam C.1,Thach Sophany1

Affiliation:

1. Chevron

Abstract

Abstract Polymer flooding by liquid polymers is an attractive technology for rapid deployment in remote locations. Liquid polymers are typically oil external emulsions with included surfactant inversion packages to allow for rapid polymer hydration. During polymer injection, a small amount of oil is typically co-injected with the polymer. The accumulation of the emulsion oil near the wellbore during continuous polymer injection will reduce near wellbore permeability. The objective of this paper is to evaluate the long-term effect of liquid polymer use on polymer injectivity. We also present a method to remediate the near well damage induced by the emulsion oil using a remediation surfactant that selectively solubilizes and removes the near wellbore oil accumulation. We evaluated several liquid polymers using a combination of rheology measurement, filtration ratio testing and long-term injection coreflood experiments. The change in polymer injectivity was quantified in surrogate core after multiple pore volumes of liquid polymer injection. Promising polymers were further evaluated in both clean and oil-saturated cores. In addition, phase behavior experiments and corefloods were conducted to develop a surfactant solution to remediate the damage induced by oil accumulation. Permeability reduction due to long term liquid polymer injection was quantified in cores with varying permeabilities. The critical permeability where no damage was observed was identified for promising liquid polymers. A surfactant formulation tailored for one of the liquid polymers improved injectivity three- to five-fold and confirms our hypothesis of permeability reduction due to emulsion oil accumulation. Such information can be used to better select appropriate polymers for EOR in areas where powder polymer use may not be feasible.

Publisher

SPE

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3