Abstract
Abstract
Polymer flooding by liquid polymers is an attractive technology for rapid deployment in remote locations. Liquid polymers are typically oil external emulsions with included surfactant inversion packages to allow for rapid polymer hydration. During polymer injection, a small amount of oil is typically co-injected with the polymer. The accumulation of the emulsion oil near the wellbore during continuous polymer injection will reduce near wellbore permeability. The objective of this paper is to evaluate the long-term effect of liquid polymer use on polymer injectivity. We also present a method to remediate the near well damage induced by the emulsion oil using a remediation surfactant that selectively solubilizes and removes the near wellbore oil accumulation. We evaluated several liquid polymers using a combination of rheology measurement, filtration ratio testing and long-term injection coreflood experiments. The change in polymer injectivity was quantified in surrogate core after multiple pore volumes of liquid polymer injection. Promising polymers were further evaluated in both clean and oil-saturated cores. In addition, phase behavior experiments and corefloods were conducted to develop a surfactant solution to remediate the damage induced by oil accumulation. Permeability reduction due to long term liquid polymer injection was quantified in cores with varying permeabilities. The critical permeability where no damage was observed was identified for promising liquid polymers. A surfactant formulation tailored for one of the liquid polymers improved injectivity three- to five-fold and confirms our hypothesis of permeability reduction due to emulsion oil accumulation. Such information can be used to better select appropriate polymers for EOR in areas where powder polymer use may not be feasible.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献