A New Approach for Reliable Estimation of Hydraulic Fracture Properties Using Elliptical Flow Data in Tight Gas Wells

Author:

Cheng Yueming1,Lee W. John2,McVay Duane A.2

Affiliation:

1. West Virginia University

2. Texas A&M University

Abstract

Summary Gas wells in low-permeability formations usually require hydraulic fracturing to be commercially viable. Pressure transient analysis in hydraulically fractured tight gas wells is commonly based on analysis of three flow regimes: bilinear, linear, and pseudoradial. Without the presence of pseudoradial flow, neither reservoir permeability nor fracture half-length can be independently estimated. In practice, as pseudoradial flow is often absent, the resulting estimation is uncertain and unreliable. On the other hand, elliptical flow, which exists between linear flow and pseudoradial flow, is of long duration (typically months to years). We can acquire much rate and pressure data during this flow regime, but no practical well test analysis technique is currently available to interpret these data. This paper presents a new approach to reliably estimate reservoir and hydraulic fracture properties from analysis of pressure data obtained during the elliptical flow period. The method is applicable to estimate fracture half-length, formation permeability, and skin factor independently for both infinite- and finite-conductivity fractures. It is iterative and features rapid convergence. The method can estimate formation permeability when pseudoradial flow does not exist. Coupled with stable deconvolution technology, which converts variable production-rate and pressure measurements into an equivalent constant-rate pressure drawdown test, this method can provide fracture-property estimates from readily available, noisy production data. We present synthetic and field examples to illustrate the procedures and demonstrate the validity and applicability of the proposed approach.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3