A Generalized Method for Dynamic Fracture Characterization Using Two-Phase Rate Transient Analysis of Flowback and Production Data

Author:

Sun Guoqing1ORCID,Zhang Zhengxin2ORCID,Mu Changhe3ORCID,Liu Chuncheng4ORCID,Deng Chao5ORCID,Li Weikai5ORCID,Hu Weiran5ORCID

Affiliation:

1. Northeast Petroleum University; Daqing Oilfield Limited Company

2. China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai (Corresponding author)

3. Daqing Oilfield Limited Company

4. China University of Petroleum, Beijing (Corresponding author)

5. China University of Petroleum, Beijing

Abstract

Summary This study presents a comprehensive method for characterizing reservoir properties and hydraulic fracture (HF) closure dynamics using the rate transient analysis of flowback and production data. The proposed method includes straightline analysis (SLA), type-curve analysis (TCA), and model history matching (MHM), which are developed for scenarios of two-phase flow in fracture, stimulated reservoir volume (SRV), and nonstimulated reservoir volume (NSRV) domains. HF closure dynamics are characterized by two key parameters, which are pressure-dependent permeability and porosity controlled by fracture permeability modulus and compressibility. The above techniques are combined into a generalized workflow to estimate iteratively the five parameters (including four optional parameters and one fixed parameter) by reconciling data in different domains of time (single-phase water flow, two-phase flow, and hydrocarbon-dominated flow), analysis methods (SLA, TCA, and MHM), and phases (water and hydrocarbon phase). We used flowback and production data from a shale gas well in the US and a shale oil well in China to verify the practicability of the method. The analysis results of the field cases confirm the good performance of the newly developed comprehensive method and verify the accuracy in estimating the static fracture properties [initial fracture pore volume (PV) and permeability] and the HF dynamic parameters using the proposed generalized workflow. The accurate prediction of the decreasing fracture permeability and porosity, fracture permeability modulus, and compressibility demonstrates the applicability of the comprehensive method in quantifying HF dynamics. The field application results suggest a reduction of the fracture PV by 15% and 20%, and a reduction of the fracture permeability by 80% and 90% for shale gas and shale oil wells, respectively.

Publisher

Society of Petroleum Engineers (SPE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3