A Mathematical Model for Predicting Long-Term Productivity of Modern Multifractured Shale-Gas/Oil Wells

Author:

Li Gao1,Guo Boyun2,Li Jun3,Wang Ming2

Affiliation:

1. Southwest Petroleum University, China

2. University of Louisiana, Lafayette

3. China University of Petroleum, Beijing

Abstract

Summary Modern multifractured shale-gas/oil wells are horizontal wells completed with simultaneous-fracturing, zipper-fracturing, and (in particular) modified-zipper-fracturing techniques. An analytical model was developed in this study for predicting the long-term productivity of these wells under conditions of pseudosteady-state (PSSS) flow, considering the cross-bilinear flow in the rock matrix and hydraulic fractures. Performance of the model was verified with the well-productivity data obtained from a shale-gas well and a shale-oil well. Sensitivity analyses were performed to identify key parameters of hydraulic fracturing affecting well productivity. The conducted field case studies show that the analytical model overpredicts shale-gas-well productivity by 2.3% and underpredicts shale-oil productivity by 7.4%. A sensitivity analysis with the model indicates that well productivity increases with reduced fracture spacing, increased fracture length, and increased fracture width, but not proportionally. Whenever operational restrictions permit, more fractures with high density should be created in the hydraulic-fracturing process to maximize well productivity. The benefit of increasing fracture width should diminish as the fracture width becomes large. Increasing fracture length by pumping more fracturing fluid can increase well-production rate nearly proportionally. Therefore, it is desirable to create long fractures by pumping high volumes of fracturing fluid in the hydraulic-fracturing process.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3