Affiliation:
1. Southwest Petroleum University, China
2. University of Louisiana, Lafayette
3. China University of Petroleum, Beijing
Abstract
Summary
Modern multifractured shale-gas/oil wells are horizontal wells completed with simultaneous-fracturing, zipper-fracturing, and (in particular) modified-zipper-fracturing techniques. An analytical model was developed in this study for predicting the long-term productivity of these wells under conditions of pseudosteady-state (PSSS) flow, considering the cross-bilinear flow in the rock matrix and hydraulic fractures. Performance of the model was verified with the well-productivity data obtained from a shale-gas well and a shale-oil well. Sensitivity analyses were performed to identify key parameters of hydraulic fracturing affecting well productivity. The conducted field case studies show that the analytical model overpredicts shale-gas-well productivity by 2.3% and underpredicts shale-oil productivity by 7.4%. A sensitivity analysis with the model indicates that well productivity increases with reduced fracture spacing, increased fracture length, and increased fracture width, but not proportionally. Whenever operational restrictions permit, more fractures with high density should be created in the hydraulic-fracturing process to maximize well productivity. The benefit of increasing fracture width should diminish as the fracture width becomes large. Increasing fracture length by pumping more fracturing fluid can increase well-production rate nearly proportionally. Therefore, it is desirable to create long fractures by pumping high volumes of fracturing fluid in the hydraulic-fracturing process.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献