Pore Pressure Prediction While Drilling Using Fuzzy Logic

Author:

Abdulmalek Ahmed S1,Elkatatny Salaheldin1,Abdulraheem Abdulazeez1,Mahmoud Mohammed1,Abdulwahab Z. Ali1,Mohamed I. M.2

Affiliation:

1. King Fahd University of Petroleum & Minerals

2. Advantek Waste Management Services

Abstract

Abstract Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of the drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit (WOB), rotary speed (RPM), rate of penetration (ROP), mud weight (MW), bulk density (RHOB), porosity (ϕ) and compressional time (Δt). A real field data is used to predict the formation pressure using Fuzzy Logic (FL) which is one technique of AI. Fuzzy Logic (FL) tool was compared with different empirical models. FL method estimated the formation pressure with a high accuracy (high correlation coefficient (R) of 0.998 and low average absolute percentage error (AAPE) of 0.234%). FL outperformed all previously published models. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure).

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3