Pore Pressure Prediction by Empirical and Machine Learning Methods Using Conventional and Drilling Logs in Carbonate Rocks
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s00603-022-03089-y.pdf
Reference68 articles.
1. Abdelaal A, Elkatatny S, Abdulraheem A (2021) Data-Driven Modeling Approach for Pore Pressure Gradient Prediction while Drilling from Drilling Parameters. ACS Omega 6(21):13807–13816
2. Abdulmalek AS, Elkatatny S, Abdulraheem A, Mahmoud M, Abdulwahab ZA, Mohamed IM (2018) Pore pressure prediction while drilling using fuzzy logic. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, April 2018. https://doi.org/10.2118/192318-MS
3. Ahmed A, Elkatatny S, Ali A, Abdulraheem A (2019) Comparative analysis of artificial intelligence techniques for formation pressure prediction while drilling. Arab J Geosci 12(18):1–13
4. Ahmed A, Elkatatny S, Abdulraheem A (2021a) Real-time static Poisson’s ratio prediction of vertical complex lithology from drilling parameters using artificial intelligence models. Arab J Geosci 14(6):1–13
5. Ahmed A, Elkatatny S, Gamal H, Abdulraheem A (2021b) Artificial intelligence models for real-time bulk density prediction of vertical complex lithology using the drilling parameters. Arab J Sci Eng (47):1–14, 10993–11006 (2022). https://doi.org/10.1007/s13369-021-05537-3
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Pore pressure estimation of the calcareous formations in the Middle Magdalena Valley Basin, Colombia;Acta Geophysica;2024-09-05
2. Pore pressure prediction of hydrocarbon reservoirs with empirical models and artificial neural network: case study in the Doba basin, Chad;Discover Geoscience;2024-09-03
3. Improved porosity estimation in complex carbonate reservoirs using hybrid CRNN deep learning model;Earth Science Informatics;2024-07-27
4. Investigation of the Influence of Roughness on the Shear Resistance of Concrete-Rock Interfaces Using Random Field Simulations, Numerical Simulations, and Neural Network Modeling: Proposition of Two Approaches for the Estimation of the Peak Shear Strength;Rock Mechanics and Rock Engineering;2024-07-02
5. A Method for Predicting Formation Pore Pressure in Carbonate Rocks;Day 2 Wed, May 08, 2024;2024-05-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3