Borehole Position Uncertainty - Analysis of Measuring Methods and Derivation of Systematic Error Model

Author:

Wolff C.J.M.1,de Wardt J.P.2

Affiliation:

1. Koninklijke/Shell Exploratie en Produktie Laboratorium

2. Nederlandse Aardolie Maatschappij

Abstract

Summary This article presents a new model for describing well-position uncertainties. An analysis for surveying position uncertainties. An analysis for surveying errors is given that demonstrates that they are mainlysystematic rather than random. The error model, based on systematic errors, compares well withpractical experience. A graph is presented that shows practical experience. A graph is presented that shows typical lateral position uncertainties of deviated wellsfor various kinds of surveys. Introduction During the past 10 years, the uncertainties involvedin determining the true course of a borehole havebecome a cause for concern. The more deviated anddeeper the holes were drilled, the more often were theoperators faced with inexplicable differences betweenvarious surveys made in the same well. As early as 1971, Truex mentioned that possible lateral positionerrors of highly inclined wells could be up to 30 m ata depth of only 2000 m. Two years before that, Walstrom et al. introduced the ellipse-of-uncertainty concept to describe the positionuncertainty, which can be expected with various surveymethods. Experience, however, has shown that theellipse calculated by this random error model isunrealistically small, which is thought to be duemainly to the nature of the statistical error modelused.The essential differences between the existingrandom error model and the model proposed in thisarticle are illustrated by the following simplifiedexample. Consider the straight and inclined part of awell with these directional characteristics: total depthalong hole (AHD or DAH) 2500 m, surveyed at100 stations at 25-m intervals, and all having aninclination of I Delta I = 30 0.5 and an azimuthof A Delta A 90 1.The bottomhole position of this well in north, east, and vertical coordinates easily is found as N = D AH sin I cos A = 0, E = D AH sin I sin A = 1250 m, andV = D AH cos I = 2165 m. The position uncertainty of the bottom of thiswell, according to the error model presented in thisarticle, follows straightforwardly from theassumption that the measuring errors at all 100 stations havethe same magnitude (they are correlated fully).Hence, by simple trigonometry, as sketched in Fig. 1, and In the random error model, however, it is assumedthat the measuring errors vary randomly from onestation to another, which gives them a tendency tocompensate one another. This randomness of themeasuring errors causes the position uncertainty tobe smaller than the former values - in our example, by a factor equal to the square root of the number ofmeasuring stations, which is 100 = 10. JPT P. 2339

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3