Stabilizing CO2-Foam using Nanoparticles

Author:

Emrani Arezoo S.1,Nasr-El-Din Hisham A.1

Affiliation:

1. Texas A&M University

Abstract

Abstract Foamed fluids have been used for decades to diminish formation damage in nearly all kinds of unconventional reservoirs with a wide range of pressures. Although water-based fluids are widely used in the oil industry as one of the most economic hydraulic fracturing methods, foams are another substitute to fracture water-sensitive reservoirs at which damage to pore throats is caused by swelling clays or fines migration. The mixture of CO2 and surfactant as a CO2-foam not only reduces formation damage by minimizing the quantity of aqueous fluid which enters the formation, but significantly improves sweep efficiency. Even though it is common to utilize surfactants in order to generate and stabilize foams, surfactants tend to degrade at high temperatures and in high salinity environments. Adding nanoparticles can solve the aforesaid problems and can increase foam stability. The choice of surfactant concentration is a critical step in preparing more stable foams. In the present work, using CO2/alpha olefin sulfonate (AOS) solution as a new foaming solution is introduced for optimizing surfactant concentration in order to generate a stable CO2-foam in unconventional reservoirs. Several experimental studies were conducted to obtain the optimal surfactant concentration using a pendant drop method for CO2/solution and CO2/nano solution. Moreover, the effects of temperature, pressure, salinity, and surfactant concentration on surface tension and the critical micelle concentration (CMC) value were studied at high pressure and high temperature (HP/HT). In these experiments the temperature ranged from ambient conditions to 302°F, while the pressure increased from atmospheric up to 435 psi. AOS solutions were prepared using different brine concentrations ranging from 1 to 10 wt% of NaCl and different surfactant concentrations from 0 to 1 wt%. Experimental results indicated that the CMC value increases as temperature increased. It also decreased while salt concentration increased. Furthermore, for a given temperature and salinity, the results did not exhibit changes in the CMC value when the pressure increased. The addition of nanoparticles decreases the CMC value. A number of research studies have been conducted to investigate the CMC value and surface tension for AOS at ambient conditions using N2. However, minimal work has been performed in order to determine such characteristics at reservoir conditions. The present work will provide a new foaming solution in order to evaluate and optimize surfactant concentrations. The present work will also investigate the effect of mixtures of surfactant and nanoparticles on the formation of stable CO2-foam in unconventional reservoirs.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3