Enhancement of Well Production in the SCOOP Woodford Shale through the Application of Microproppant

Author:

Calvin James1,Grieser Bill1,Bachman Travis1

Affiliation:

1. Halliburton

Abstract

Abstract This paper presents the incorporation of microproppant (MP) in stimulation treatment designs in the liquids-rich South Central Oklahoma Oil Province (SCOOP) Woodford and its effects on well production. When MP is used, it can enter secondary fractures that are too narrow and restricted for even conventional small proppant, such as 100-mesh sand, to enter and prop them open during production. Descriptions of the MP, area formation, numerical modeling, production results, and offset comparisons are presented. In unconventional formations, communication between the secondary fracture network, which includes natural fractures and secondary fractures propagated during stimulation, and the wellbore is crucial for improved well production. Perhaps the most difficult objective to accomplish when treating unconventional formations is not just enhancing the number of secondary fractures opened, but increasing the number of those secondary fractures that remain open over a long period of time. During stimulation treatments, MP is pumped during the initial pad stages so it can enter the secondary fractures that are propagated, and keep them open when pressure on the formation is relieved during production. An analysis of treatments conducted within the Woodford play, and associated numerical modeling, demonstrated the presence of pressure dependent leakoff (PDL), low stress anisotropy, and high net pressures as indications of reservoir complexity. Because of the predicted fracture complexity, a smaller proppant is necessary to prop the narrower secondary fractures. As a result, a series of field trials were conducted to examine the effectiveness of MP for enhancing well production. Comparisons are made between wells where MP was used and offset well production to demonstrate such impact. A description of treatment designs used is also presented for comparison. The wells where MP was pumped during the initial pad stages of stimulation treatments demonstrated significant production uplift compared to offset wells. Additionally, MP demonstrated a secondary benefit, which indirectly manifests in net treating pressure. PDL is believed to be a major contributor to excessively high treating pressures and screenouts in the area. Because the particle size of the MP enables better access to the narrower secondary fracture network, it also reduces entry friction associated with PDL. Such reduction has led to lower treating pressures, which subsequently has improved placement efficiency of stimulation treatments.

Publisher

SPE

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3