Classifying Lithofacies from Textural Features in Whole Core CT-Scan Images

Author:

Chawshin K.1,Gonzalez A.2,Berg C. F.1,Varagnolo D.1,Heidari Z.2,Lopez O.3

Affiliation:

1. Norwegian University of Science and Technology

2. The University of Texas at Austin

3. Equinor ASA

Abstract

Summary X-ray computerized tomography (CT) is a nondestructive method of providing information about the internal composition and structure of whole core reservoir samples. In this study we propose a method to classify lithology. The novelty of this method is that it uses statistical and textural information extracted from whole core CT images in a supervised learning environment. In the proposed approaches, first-order statistical features and textural grey-level co-occurrence matrix (GLCM) features are extracted from whole core CT images. Here, two workflows are considered. In the first workflow, the extracted features are used to train a support vector machine (SVM) to classify lithofacies. In the second workflow, a principal component analysis (PCA) step is added before training with two purposes: first, to eliminate collinearity among the features and second, to investigate the amount of information needed to differentiate the analyzed images. Before extracting the statistical features, the images are preprocessed and decomposed using Haar mother wavelet decomposition schemes to enhance the texture and to acquire a set of detail images that are then used to compute the statistical features. The training data set includes lithological information obtained from core description. The approach is validated using the trained SVM and hybrid (PCA + SVM) classifiers to predict lithofacies in a set of unseen data. The obtained results show that the SVM classifier can predict some of the lithofacies with high accuracy (up to 91% recall), but it misclassifies, to some extent, similar lithofacies with similar grain size, texture, and transport properties. The SVM classifier captures the heterogeneity in the whole core CT images more accurately compared with the core description, indicating that the CT images provide additional high-resolution information not observed by manual core description. Further, the obtained prediction results add information on the similarity of the lithofacies classes. The prediction results using the hybrid classifier are worse than the SVM classifier, indicating that low-power components may contain information that is required to differentiate among various lithofacies.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3