Data-driven lithofacies prediction in complex tight sandstone reservoirs: a supervised workflow integrating clustering and classification models

Author:

Ali Muhammad,Zhu Peimin,Jiang Ren,Huolin Ma,Ashraf Umar,Zhang Hao,Hussain Wakeel

Abstract

AbstractLithofacies identification plays a pivotal role in understanding reservoir heterogeneity and optimizing production in tight sandstone reservoirs. In this study, we propose a novel supervised workflow aimed at accurately predicting lithofacies in complex and heterogeneous reservoirs with intercalated facies. The objectives of this study are to utilize advanced clustering techniques for facies identification and to evaluate the performance of various classification models for lithofacies prediction. Our methodology involves a two-information criteria clustering approach, revealing six distinct lithofacies and offering an unbiased alternative to conventional manual methods. Subsequently, Gaussian Process Classification (GPC), Support Vector Machine (SVM), Artificial Neural Network (ANN), and Random Forest (RF) models are employed for lithofacies prediction. Results indicate that GPC outperforms other models in lithofacies identification, with SVM and ANN following suit, while RF exhibits comparatively lower performance. Validated against a testing dataset, the GPC model demonstrates accurate lithofacies prediction, supported by synchronization measures for synthetic log prediction. Furthermore, the integration of predicted lithofacies into acoustic impedance versus velocity ratio cross-plots enables the generation of 2D probability density functions. These functions, in conjunction with depth data, are then utilized to predict synthetic gamma-ray log responses using a neural network approach. The predicted gamma-ray logs exhibit strong agreement with measured data (R2 = 0.978) and closely match average log trends. Additionally, inverted impedance and velocity ratio volumes are employed for lithofacies classification, resulting in a facies prediction volume that correlates well with lithofacies classification at well sites, even in the absence of core data. This study provides a novel methodological framework for reservoir characterization in the petroleum industry.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3