A Real-Time Fiber Optical System for Wellbore Monitoring: A Johan Sverdrup Case Study

Author:

Schuberth Maximilian Georg1,Bakka Håkon Sunde1,Birnie Claire Emma2,Dümmong Stefan1,Haavik Kjetil Eik1,Li Qin1,Synnevåg Johan-Fredrik1,Saadallah Yanis1,Vinje Lars1,Constable Kevin1

Affiliation:

1. Equinor ASA

2. Formerly Equinor ASA, King Abdullah University of Science and Technology

Abstract

Abstract Fiber Optic (FO) sensing capabilities for downhole monitoring include, among other techniques, Distributed Temperature Sensing (DTS) and Distributed Acoustic Sensing (DAS). The appeal of DTS and DAS data is based on its high temporal and spatial sampling, allowing for very fine localization of processes in a wellbore. Furthermore, the broad frequency spectrum that especially DAS data is acquired with, enables observations, ranging from more continuous effects like oil flow, to more distinct effects like opening and closing of valves. Due to the high data volume of hundreds of Gb per well per hour, DAS data has traditionally been acquired acquisition-based, where data is recorded for a limited amount of time and processed at a later point in time. This limits the decision-making capability based on this data as reacting to events is only possible long after the event occurred. Equinor has addressed these decision-making shortcomings by building a real-time streaming solution for transferring, processing, and interpretation of its FO data at the Johan Sverdrup field in the North Sea. The streaming solution for FO data consists of offshore interrogators streaming raw DAS and DTS data via a dedicated bandwidth to an onshore processing cluster. There, DAS data is transformed into FO feature data, e.g., Frequency Band Energies, which are heavily decimated versions of the raw data; allowing insight extraction, while significantly reducing data volumes. DTS and DAS FO feature data are then streamed to a custom-made, cloud-based visualization and integration platform. This cloud-based platform allows efficient inspection of large data sets, control and evaluation of applications based on these data, and sharing of FO data within the Johan Sverdrup asset. During the last year, this FO data streaming pipeline has processed several tens of PB of FO data, monitoring a range of well operations and processes. Qualitatively, the benefits and potential of the real-time data acquisitions have been illustrated by providing a greater understanding of current well conditions and processes. Alongside the FO data pipeline, multiple prototype applications have been developed for automated monitoring of Gas Lift Valves, Safety Valve operations, Gas Lift rate estimation, and monitoring production start-up, all providing insights in real-time. For certain use cases, such as monitoring production start-up, the FO data provides a previously non-existent monitoring solution. In this paper, we will discuss in detail the FO data pipeline architecture from-platform-to-cloud, illustrate several data examples, and discuss the way-forward for "real-time" FO data analytics.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3