Annuli Liquid-Level Surveillance Using Distributed Fiber-Optic Sensing Data

Author:

Haavik Kjetil E.1ORCID

Affiliation:

1. Equinor ASA

Abstract

Summary Annular pressure buildup due to fluid expansion can be mitigated by using a compressible fluid, typically nitrogen, as a cushion at the top of an annuli. The advantage of using a nitrogen cushion is that we do not have to manipulate annuli pressures as often during variations in production. A disadvantage is that it is more difficult to detect small leaks to or from an annulus. For gas lift-assisted production wells, Annulus A is used for the transportation of gas down to the gas lift valves (GLVs), effectively making up a large gas cushion compared with the full length for the annulus. In light of this, monitoring annular pressures and ensuring continuous control of fluid volumes are essential for effective well barrier management. We present relevant theory and show that we can track annuli liquid levels using distributed temperature sensing (DTS) and/or distributed acoustic sensing (DAS) data to detect leaks, estimate leak rates, and infer leak paths. We find that the main cause for observing liquid levels in these data is because the equilibrium temperature at the fiber is dependent on the fluid fill of the various annuli in addition to the temperature inside the tubing and outside of the well. Six data examples with variations in liquid level(s) are presented to demonstrate this. Furthermore, simple models for estimating changes in liquid levels are proposed and compared with liquid levels from distributed fiber-optic (FO) data. Being able to detect leaks to or from annuli makes it possible for the operator to apply mitigating action in a timely manner, prevent unwanted well integrity situations, and ensure production regularity.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3