A New and Practical Oil-Characterization Method for Thermal Projects: Application to Belridge Diatomite Steamflood

Author:

Zhang L..1,Pieterson R..1,Dindoruk B..1,Stoffels P..1,Fan Y..1

Affiliation:

1. Shell International Exploration and Production

Abstract

Summary Most of the oil-characterization approaches for thermal recovery are designed for heavy oils at moderate temperatures, in which oil can be represented in very simplistic ways (such as “gas” and “oil”). However, when oil is exposed to very high steam temperatures (i.e., 550°F), and/or the oil is lighter than the classical range defined for heavy oils and is exposed to a wide spectrum of thermal effects, such as distillation of the lighter ends, the conventional methods of representing the interaction of steam and the in-situ fluids are not accurate. In many cases, we have to first evaluate the quality of the data, and then represent the average behavior with a single most likely fluid model per reservoir segment (plus other scenarios, as needed) to simulate the production performance. There is a need to develop a streamlined approach to bring such data into industrial simulators in a practical way. In this study, we have developed a fit-for-purpose approach to generate a consistent pressure/volume/temperature (PVT) model over the whole reservoir, reflecting both pressure and temperature changes through the entire oil accumulation. The model represents the oil viscosity for a wide spectrum of temperatures, from reservoir temperature to steam temperature (thermal-process range). A systematic lumping scheme enables conversion of the characterized PVT model for numerical simulators with the minimal number of pseudocomponents while still capturing the essence of thermal physics. To our knowledge, there is no systematic study of this nature available in the literature. We have tested this approach in the Belridge diatomite steamdrive project. The study confirmed that steamflood incremental oil production in a light-oil reservoir is sensitive to the component-lumping scheme because of distillation of the lighter ends. We also found that a five-component PVT model, representing the physics in “fit-for-purpose” dynamic simulation, best compromises between minimal number of components and physical description of the light-oil behavior.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Outlier detection and selection of representative fluid samples using machine learning: a case study of Iranian oil fields;Journal of Petroleum Exploration and Production Technology;2024-08-01

2. Numerical Simulation of Catalytic In Situ Oil Upgrading Process;Catalytic In‐Situ Upgrading of Heavy and Extra‐Heavy Crude Oils;2023-06-02

3. Review of recent advances in petroleum fluid properties and their representation;Journal of Natural Gas Science and Engineering;2020-11

4. Photocatalytic degradation of penicillin G from simulated wastewater using the UV/ZnO process: isotherm and kinetic study;Journal of Environmental Health Science and Engineering;2020-02-18

5. Models of Thermal Enhanced Oil Recovery in Fractured Reservoirs;SPE Reservoir Evaluation & Engineering;2018-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3