A Coupled Flow–Geomechanical Modeling of Out-of-Sequence Fracturing Using a Dual-Lattice Implementation of Synthetic-Rock-Mass Approach

Author:

Jamaloei Benyamin Yadali1

Affiliation:

1. NCS Multistage, Inc.

Abstract

Summary In out-of-sequence (OOS) pinpoint fracturing, Stage 1 is fractured, followed by Stage 3, after which Stage 2 (center fracture) is placed between Stages 1 and 3 (outside fractures). The center fracture can exploit the reduced stress anisotropy to activate planes of weakness (e.g., fissures) and create branch fractures that can connect hydraulic fractures to stress-relief fractures, ultimately enhancing fracture connectivity and complexity. It has been trialed in western Siberia (2014) and western Canada (2017 to 2019) with overall operational and production performance success. Previous fracture-modeling works calibrated by OOS fracturing trials have either used shear-decoupled planar-fracture models (in which slippage along the shear planes restricts the displacement to a limited area because of displacement damping)—which are unable to reproduce out-of-plane fracture complexity, and to dynamically track the change in stress anisotropy and orientation—or discrete-fracture-network (DFN) models, which often exaggerate the fracture-network connectivity, and reproduce unrealistically high fracture-network-extension pressures in the stimulated reservoir volume (SRV). This work attempts to resolve the issues in planar-fracture and DFN models by more realistically addressing the dominant mechanisms of OOS fracturing, dynamic changes in the stress anisotropy and orientation, activation of pre-existing planes of weaknesses, and poroelasticity using an iteratively coupled flow–geomechanical model that uses the dual-lattice implementation of the synthetic-rock-mass (SRM) model with a robust, fully coupled, iterative flow/stress solution to capture the following: Nonlinear deformations caused by induced tensile- and shear-fracture-complexity propagation Induced stress shadowing in and around the SRV Sliding of opened, pre-existing joints, fractures, and fissures using the smooth-joint model (SJM) Propagation of the hydraulic fracture as an aggregate of intact matrix fracturing and opening and slip of pre-existing fluid-filled planes of weakness (e.g., joints, fractures, fissures) Permeability enhancement in the main tensile and complex fractures following the updated deformation aperture from the coupled solution The results (fracture geometries and treatment pressures) of the three models (planar-fracture, DFN, and SRM with lattice models) are compared after using each model for treatment-pressure history matching of an OOS-fracturing trial. The calibrated, coupled SRM with lattice model more reasonably reproduces the measured fracture-extension pressures and end-of-job pressures from OOS pinpoint fracturing treatments, and it reveals the following: The dynamic change in the stress-field orientation and magnitude during OOS fracturing leads to a reduction in stress anisotropy and complex out-of-plane fracturing in the SRV for center fractures. Center fractures tend to be narrower and shorter if sufficient out-of-zone growth is attained in the absence of strong vertical containment, making OOS fracturing an option for penetrating multistacked zones in one treatment. Where center fractures are shorter or near-well fracture complexity is generated, OOS fracturing can be considered in treating the child wells to reduce fracture hits. Compared with planar-fracture and DFN models, this coupling technique achieves the following: Accounts for dominant mechanisms of complex shear and tensile fracturing Renders fast computation in simulating large 3D models with dual-lattice implementation of SRM with SJM Reproduces fracture surface area and SRV permeability more realistically Leads to a more reasonable history match of the measured OOS-fracturing pressures

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3