Abstract
Summary
Alternate or out-of-sequence fracturing (OOSF) has been field tested in western Siberia in 2014 and in western Canada in 2017, 2018, and 2019, with operational success and positive well-production performance. It is conducted by fracturing Stage 1 (at the toe) and then fracturing Stage 3 (toward the heel), followed by tripping back to place Stage 2 (center fracture) between Stages 1 and 3 (outside fractures). During placing the center fracture, OOSF can exploit the reduced stress anisotropy to effectively activate the planes of weakness (natural fractures, fissures, faults, and joints) to potentially create failure surfaces with different breakdown angles in virtually all directions. This can potentially lead to branch fractures that can connect the hydraulic fractures to stress-relief fractures that are created while placing the outside fractures, ultimately generating a complex fracture network and enhancing fracture connectivity.
Despite prior works on fracture modeling (calibrated by field tests) and geomechanical modeling, a comparative analysis of wellbore-breakdown character and hydraulic-fracture orientation during OOSF is still lacking. Thus, in this study, the solutions to 3D Kirsch equations are provided for both low and high stress anisotropies to analyze the differences in breakdown gradient, failure angle, and fracture orientation under various geomechanical and treatment-design conditions. The consideration is given to an intact rock from an isotropic stress state to high-stress-anisotropy conditions. The results are analyzed in the context of the downhole-measured pressures and temperatures.
The results indicate that the reduced stress anisotropy during OOSF leads to favorable treating conditions: With a net fracture-extension pressure greater than the reduced stress anisotropy, fracture complexity can be created by allowing the fracture to grow with different failure angles. Also, a well can be drilled and fractured at any inclination or azimuth with favorable breakdown gradients of 45 to 85% of the overburden gradient. The reduced stress anisotropy can also trigger some challenges. The near-well stress-concentration effects can become more pronounced, promoting longitudinal fracture creation. For treatments with tortuosity greater than the stress anisotropy, longitudinal fractures can be created instead of transverse fractures because the tortuosity is transmitted to the wellbore body and not into the fractures. In this case, to initiate transverse fractures, either the wellbore must intersect the pre-existing transverse notches or the near-well pore-fluid pressure must exceed the axial stress and rock strength (before the hoop stress reaches the tensile failure point). In addition, the fracture might lose directional control and follow any path of weakness. Hence, the rock-fabric effects become more dominant under a low-stress-anisotropy regime, which means that with no pre-existing transverse natural fractures or notches, a longitudinal fracture can be generated at the bottom and top of an intact horizontal wellbore.
This is the first attempt in identifying the circumstances that should be avoided for optimizing OOSF through geomechanical modeling and the analysis of the downhole-measured pressures and temperatures to reveal the differences in breakdown character using the Kirsch equations under various geomechanical and treatment conditions during the low-stress-anisotropy regime.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献