Analytical Solutions for Gas Displacements With Bifurcating Phase Behavior

Author:

Khorsandi Saeid1,Ahmadi Kaveh2,Johns Russell T.1

Affiliation:

1. Pennsylvania State University

2. BP

Abstract

Summary Minimum miscibility pressure (MMP) is one of the most important parameters in the design of a successful gasflooding process. The most-reliable methods to calculate the MMP are based on slimtube experiments, 1D slimtube simulations, mixing-cell calculations, and the analytical methods known as the method of characteristics (MOC). The calculation of MMP by use of MOC is the fastest method because it relies solely on finding the key tie lines in the displacement path. The MOC method for MMP estimation in its current form assumes that the composition path is a series of shocks from one key tie line to the next. For some oils, however, these key tie lines do not control miscibility, and the MMP calculated by use of the key-tie line approach can be significantly in error. The error can be as high as 5,000 psia for heavier oils or CO2 displacements at low temperature in which three-phase hydrocarbon regions can exist (L1–L2–V). At higher pressures, the two- or three-phase region can split (or bifurcate) into two separate two-phase regions (L1–L2 and L1–V regions). Thus, for the MMP calculation from MOC to be correct, we must calculate the entire composition path for this complex phase behavior, instead of relying on the shock assumption from one key tie line to the next. In this paper, the MOC-composition route is developed completely for the bifurcating phase-behavior displacement for pure CO2 injection by use of a simplified pseudoternary system that is analogous to the complex phase behavior observed for several real displacements with CO2. We develop the MOC analytical solutions by honoring all constraints required for a unique solution—velocity, mass balance, entropy, and solution continuity. The results show that a combination of shocks and rarefaction waves exists along the nontie-line path, unlike previous MOC solutions reported to date. We show that by considering the entire composition path, not just the key tie lines, the calculated MMP agrees with the mixing-cell method. We also show that, in this complex ternary displacement, the displacement mechanism has features of a both condensing and vaporizing (C/V) drive, which was thought to be possible only for gasfloods with four or more components. For pure CO2 injection, the solution also becomes discontinuous for oils that lie on the tie line envelope curve. Finally, we show that shock paths within the two-phase region are generally curved in composition space and that there is no MMP for some oil compositions considered in the displacements by CO2. Recovery can be large even though the MMP is not reached.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3