A New Way of Compositional Simulation without Phase Labeling

Author:

Khorsandi Saeid1,Li Liwei2,Johns Russell T.3

Affiliation:

1. University of Wyoming (Currently at Chevron ETC)

2. West Virginia University

3. The Pennsylvania State University

Abstract

Summary Current relative permeability models rely on labeling a phase as “oil” and “gas” and cannot therefore capture accurately the effect of compositional variations on relative permeabilities and capillary pressures in enhanced oil recovery processes. Discontinuities in flux calculations caused by phase labeling problems not only cause serious convergence and stability problems but also affect the estimated recovery factor owing to incorrect phase mobilities. We developed a fully compositional simulation model using an equation of state (EoS) for relative permeabilities (kr) to eliminate the unphysical discontinuities in flux functions caused by phase labeling issues. The model can capture complex compositional and hysteresis effects for three-phase relative permeability. Each phase is modeled separately based on physical inputs that, in part, are proxies to composition. Phase flux calculations from one gridblock to another are also updated without phase labels. The tuned kr-EoS model and updated compositional simulator are demonstrated for simple ternary cases, multicycle three-phase water-alternating-gas (WAG) injection, and three-hydrocarbon-phase displacement with complex heterogeneity. The approach improves the initial estimates and convergence of flash calculations and stability analyses, as well as the convergence in the pressure solvers. The new compositional simulator allows for high-resolution simulation that gives improved accuracy in recovery estimates at significantly reduced computational time.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3